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(All this goes back to mid-1800’s, if not earlier!)
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Resultants and common zeros

1. Discriminants and multiple zeros
For k a field, and polynomial f € k[z], the discriminant of f is (with no universal notation),

H(Qi —0;) (6; the zeros of f in k)
i#]

where k is an algebraic closure of k. The obvious intentional point is that this is 0 if and only if there is a
repeated /multiple zero of f.

Because that expression is invariant under permutations of those zeros, it is expressible in terms of the
elementary symmetric polynomials in the 6’s, which are (up to signs) the coefficients of f. Beyond the
quadratic case, it is tedious to execute the algorithm to obtain that expression of the discriminant. It is
barely palatable in the cubic case.

2. Euclidean algorithm for ged(f, f')

At the same time, f has a multiple root/factor if and only if ged(f, f’) is non-trivial, because any repeated
factor of f will persist to f/. And conversely. In some extreme cases, it is feasible to formulaically describe
the outcome of the Euclidean algorithm applied to f and f’. For example, for f(z) = 2™ + ax + b:

1
ff(n:c"*1+a) = ar+b—2a = a(l—=)x+b

f@) == fa) = (@ +ax+b) -~ n n

Of course, we don’t care about n = 1, and we decide now to not care about a = 0 (which would be easy to
appraise separately). Thus, this linear factor is essentially the same as

From the Euclidean algorithm for polynomials over a field, we know that the remainder, upon dividing g(z)
by  — «, is g(«). Thus, the next step in this slightly larger Euclidean algorithm is

F@) =1 _bl)> = /(o _”1)>
where we do not care about the dividend. This is
(aony) o= o (e =) (0 (o 1))
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We can adjust by non-zero constants, to obtain
nnbnfl 4 (1 _ n)nflan

That is, the latter expression vanishes if and only if f has a repeated factor.

3. ged(f, f') is discriminant of f

[3.1] Claim: For f(z) = 2" + ax + b, the expression n"b"~ + (1 — n)"~'a™ obtained above, by applying
Euclidean algorithm to f and f’, is the discriminant of f.

Proof: The heuristic is about degree considerations, in terms of the zeros of f in an algebraic closure of k.
Namely, on one hand, H#j (0; — 6,) is apparently of degree n(n — 1) in the zeros ;. On the other hand,
a = *s,-1 and b = s, the elementary symmetric polynomials in the zeros, which are of degrees n — 1 and
n. Thus, the expression obtained via the Euclidean algorithm is apparently of degree (n — 1)n, as well.

However, for one thing, if the 6; are merely numbers of some kind, or abstract field elements, this notion of
degree does not have obvious content. This problem can be overcome by treating the universal version of the
situation, namely, where k is the fraction field K (¢1,...,t,) of a polynomial ring K|[tq,...,t,], and f € k[z]
has zeros t;. The notion of (total) degree does make sense in K[ty,...,t,], so we might want to consider the
alleged identity in K|z, t1,...,t,], even though we did the computation in a larger ring.

That is, in K[t1,...,t,], indeed sy is of (total) degree £. So a is indeed of degree n — 1, and b of degree n, so
a™ and b"~! are both of degree n(n — 1), as the heuristic gives. And the product defining the discriminant,
likewise, is of (total) degree n(n — 1) in K[t1,...,t,].

By unique factorization in polynomial rings over fields, since both expressions vanish (as polynomials in
Klti,...,t,]) whenever any t; and ¢; are mapped to the same element of any target ring, both are divisible
by all t; —¢;. In both cases, by degree arguments, this does not leave any room for further factors of either.

4. Resultants and common zeros

For field &k and f, g € k[x], the resultant R(f,g) of f and g is intended to be a polynomial (with coefficients in
k) in the coeflicients of f and g whose vanishing is equivalent to f and g having simultaneous zeros. Thus, by
the derivation criterion for repeated factors/roots, it should be that, the discriminant of a single polynomial
f is the resultant of f and f.

Letting «; and §; be the zeros (with multiplicities) of f, g in an algebraic closure of k, up to constants, the
resultant should be

R(f,9) = [(ei = 8))
0,J
Since this R(f, ¢g) is invariant under permutations of the «;, and under permutations of the ;, by the theory

of symmetric functions, it is a polynomial in the elementary symmetric polynomials in the a; and the ;.
Up to signs, these are the coefficients of f and g. This is one proof of the existence of the resultant.

However, the basic algorithm to express symmetric polynomials in terms of the elementary ones is
qualitatively opaque, and, being completely general, ignores structural features of a given situation.

Another, more structured/intelligible approach: let f be of degree d and g of degree e. Let P., be the
k-vectorspace of polynomials of degrees < n. The linear map

P<6@P<d—>P<e+d by A@B—>Af+Bg
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is a k-linear map from one (e + d)-dimensional space to another. It has non-zero kernel exactly when the
determinant of the matrix giving the map, in whatever coordinates, is 0.

When the determinant is 0, there are non-zero polynomials A, B, of degrees less than those of g, f (in that
order), such that Af + Bg = 0. That is, Af = —Bg. By unique factorization in k[z], since the degree of B
is strictly less than that of f, some factor of f must divide g. So, again, we have existence of a resultant,
namely, that determinant.

That determinant can be expressed formulaically in terms of the natural basis for polynomials consisting
of monomials z?. Letting T : Pco @ Peg — P.ciq be that map, and f(z) = ag + a1z + ... + agz?, and
g(x) = by + byw + ...+ agz?,

Tle0) = 1-f = ap+ a1+ ...+ agx?
Tz®0) = z-f = apr + arz? + ...+ agzdt
T t@0) = 27t f = aez® '+ a1z +... +agzti!

T(OEBl) = 1l-g = bo +b1x + ...+ bext
TO®z) = xz-g = box + byx? + ... + bext!
TO® 24 = 297l.g = bexd 4+ bz + ... +bgattd!

More later! :)

This does lead to a classic algebraic-curve fact, namely, Bézout’s theorem, that two plane algebraic curves
over C, defined by polynomials f, g, intersect in (deg f) - (deg g) points, counting multiplicities and points at
infinity.




