regarding Buildings and Classical Groups

[Edited-down a little April 2009]

D. Barbasch and A. Moy, Whittaker models with an Iwahori-fixed vector, Representation Theory and Analysis on Homogeneous Spaces (New Brunswick NJ 1993), pp. 101-105, Contemporary Math. 177, A.M.S., Providence, 1994.

J. N. Bernstein, All reductive p-adic groups are tame, J. Functional Analysis and its Applications 8 (1974), pp. 3-5.

J. N. Bernstein, P-invariant distributions on GL(n) and the classification of unitary representations of GL(n), Lecture Notes in Math. 1041 (1983), pp. 50-102.

I.N. Bernstein, P. Deligne, D. Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math. 47 (1986), pp. 180-192.

I.N. Bernstein and A.V. Zelevinsky, Induced representations of reductive p-adic groups, Ann. Scient. Ec. Norm. Sup. 10 (1977), pp. 441-472.

A. Borel, Groupes lineaires algebriques, Ann. of Math. 64 (1956), pp. 20-80.

A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.

A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Inv. Math. 35 (1976), pp. 233-259.

A. Borel and J.-P. Serre, Corners and Arithemetic Groups, Comment. Math. Helv. 48 (1974), pp. 244-297.

A. Borel and J.-P. Serre, Cohomologie d'immeubles et de groupes S-arithmetiques, Topology 15 (1976), pp. 211-232.

A. Borel and J. Tits, Groupes reductifs, Publ. I.H.E.S. 27 (1965), pp. 55-151; Complements, Publ. Math. I.H.E.S. 41 (1972), pp. 253-276.

M. Brion, Classification des espaces homogenes spheriques, Comp. Math. 63 (1987), pp. 189-208.

K. Brown, Buildings, Springer-Verlag, New York, 1989.

F. Bruhat, Representations des groupes differential equation Lie semi-simples complexes, C. R. Acad. Sci. Paris 238 (1954), pp. 437-439.

F. Bruhat, Distributions sur un groupe localement compact et applications a l'etude des representations des groupes p-adiques, Bull. Math. Soc. France 89 (1961), pp. 43-75.

F. Bruhat, Sure les representations des groupes classiques p-adiques, I, II, Amer. J. Math. 83 (1961), pp. 321-338, 343-368.

F. Bruhat, Sur une classe de sous-groupes compacts maximaux des groupes de Chevalley sur un corps p-adique, Publ. Math. I.H.E.S. no. 23 (1964), pp. 46-74.

F. Bruhat, p-adic Groups, in Proc. Symp. Pure Math. no. 9, AMS, Providence, 1966, pp. 63-70.

F. Bruhat, Groupes algebriques semisimples sur un corps local, Actes Congres Intern. Math (Paris 1970), pp. 285-290, vol. II, Gauthier-Villars, Paris, 1971.

F. Bruhat and J. Tits, BN-paires de type affine et donnees radicielles, C.R. Acad. Sci. Paris serie A, vol 263 (1966), pp. 598-601.

F. Bruhat and J. Tits, Groupes simples residuellement deployes sur un corps local, ibid, pp. 766-768.

F. Bruhat and J. Tits, Groupes algebriques simples sur un corps local, ibid, pp. 822-825.

F. Bruhat and J. Tits, Groupes algebriques simple sur un corps local: cohomologie galoisienne, decomposition d'Iwasawa et de Cartan, ibid, pp. 867-869.

F. Bruhat and J. Tits, Groupes Reductifs sur un Corps Local, I: Donnees radicielles valuees, Publ. Math. I.H.E.S. 41 (1972), pp. 5-252.

F. Bruhat and J. Tits, Groupes Reductifs sur un Corps Local, II: Schemas en groups, existence d'une donnee radicielle valuee, ibid 60 (1984), pp. 5-184.

F. Bruhat and J. Tits, Schemas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. Fr. 112 (1984), pp. 259-301.

F. Bruhat and J. Tits, Groupes Reductifs sur un Corps Local, III: Complements et applications a la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo 34 (1987), pp. 671-688.

C.J. Bushnell and P.C. Kutzko, The Admissible Dual of GL(N) via Compact-Open Subgroups, Ann. of Math. Studies no. 129, Princeton Univ. Press, 1993.

C.J. Bushnell and P.C. Kutzko, The admissible dual of SL(n), I, Ann. Sci. Ec. Norm. Sup 26 (1993), pp. 261-280.

C.J. Bushnell and P.C. Kutzko, The admissible dual of SL(n), II, Proc. London. Math. Soc. 68 (1994), pp. 317-379.

H. Caroyal, Representations cuspidales du groupe linear, Ann. Sci. Ec. Norm. Sup. 17 (1984), pp. 191-225.

P. Cartier, Groupes finis engendres par des symmetries, Sem. C. Chevalley exp. 14 (1956-58), Paris, 1958.

P. Cartier, Representations of p-adic groups: a survey, Proc. Symp. Pure Math. 33, pp. 111-156, A.M.S., 1979.

W. Casselman, Introduction to the Theory of Admissible Representations of p-adic Reductive Groups, unpublished manuscript.

W. Casselman, The unramified principal series of p-adic groups, I: the spherical function, Comp. Math. vol. 40 (1980), pp. 387-406.

W. Casselman, A new non-unitary argument for p-adic representations, J. Fac. Sci. Univ. Tokyo 28 (1981), pp. 907-928.

W. Casselman and J. Shalika, The unramified principal series of p-adic groups, II: the Whittaker function, Comp. Math. vol 41 (1980), pp. 207-231.

C. Chevalley, Sur certain groupes simples, Tohoku Math. J. 7 (1955), pp. 14-66.

C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), pp. 778-782.

L. Clozel, Invariant harmonic analysis on Schwartz space of a reductive p-adic group, Harmonic Analysis on Reductive Groups Bowdoin College 1989, Progr. in Math. vol 101, Birkhauser, Boston, 1991.

L. Corwin, A. Moy, P.J. Sally, Degrees and formal degrees for division algebras and GL(n) over a p-adic field, Pac. J. Math. 141 (1969), pp. 21-45.

H.S.M. Coxeter, Discrete groups generated by reflections, Ann. of Math. 35 (1934), pp. 588-621.

H.S.M. Coxeter, The complete enumeration of finite groups of the form Ri2= (RiRj)kij=1, J. London Math. Soc. 10 (1935), pp. 21-25.

M. Deuring, Algebren, Springer, Berlin, 1935.

J. Dieudonne, Les extensions quadratiques des corps non-commutatifs et leurs applications, Acta Math. 87 (1952), pp. 175-242.

J. Dieudonne, Sur les groupes unitaires quaternioniques a deux et a trois variables, Bull. des Sci. Math. 77 (1953), pp. 195-213.

J. Dieudonne, La geometrie des groupes classiques, second edition, Ergebnisse der Math. 5, Springer, 1963.

M. Eichler, Quadratische Formen und orthogonale Gruppen, Springer, 1952.

H. Freudenthal, Oktaven, Ausnahmegruppen, und Oktavengeometrie, second edition, Math. Inst. der Rijksuniversiteit, Utrecht, 1951.

H. Freudenthal, Beziehungen der $E_7$ und $E_8$ zur Oktavenebene, I-XI, Proc. Kon. Ned. Akad. Wet. 57 (1954), pp. 218-230; 363-368; 58 (1955), pp. 151-157, 277-285; 62 ( 1959), pp. 165-201, 447-474; 66 (1963), pp. 457-487.

M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), pp. 59-103.

V. Ginzburg, Lagrangian construction for representations of Hecke algebras, Adv. in Math. 63 (1987), pp. 100-112.

V. Ginzburg, Proof of the Deligne-Langlands conjecture, (A.M.S. translation), Soviet Math. Dokl. vol 35 (1987), pp. 304-308.

V. Ginzburg, Geometrical aspects of representations, Proc. Intern. Cong. Math. Berkeley 1986 vol. 1, pp. 840847, A.M.S., Providence, 1987.

V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum groups of type $A_n$, Inter. Math. Research Notices no. 3 1993, Duk Math. J. 69 (1993), pp. 67-85.

R. Godement, Groupes lineaires algebriques sur un corps parfait, Sem. Bourb. expose 206, Paris, 1960.

O. Goldman and N. Iwahori, The space of p-adic norms, Acta Math. 109 (1963), pp. 137-177.

L.C. Grove and C.T. Benson, Finite Reflection Groups, second edition, Graduate Texts in Math., Springer-Verlag, New York, 1985.

R. Gustafson, The degenerate principal series of Sp(2n), Mem. A.M.S. 248, 1981.

A. Gyoja and K. Uno, On the semisimplicity of Hecke algebras, J. Math. Soc. Japan vol 41 (1989), pp. 75-79.

G. Harder, Uber die Galoiskohomologie halbeinfacher Matrizengruppen I, Math. Z. 90 (1965), pp. 404-428.

Harish-Chandra and G. van Dijk, Harmonic Analysis on Reductive p-adic Groups, Lecture Notes in Math. 162, Springer, 1970.

Harish-Chandra, Admissible distributions on reductive p-adic groups, Lie Theories and Their Applications, Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ontario (1978), pp. 281-347.

G. Henniart, Representations des groupes reductifs p-adiques, Sem. Bourb. exp. 736 (1990-91).

H. Hijikata, Maximal compact subgroups of p-adic classical groups (in Japanese), Sugaku no Ayumi, 10-2 (1963), pp. 12-23.

H. Hijikata, Maximal compact subgroups of some p-adic classical groups, mimeographed notes, Yale University, 1964.

H. Hijikata, On arithmetic of p-adic Steinberg groups, mimeographed notes, Yale University, 1964.

H. Hijikata, On the structure of semi-simple algebraic groups over valuation fields, I, Japan, J. Math. (1975), vol. 1 no. 1, pp. 225-300.

H.L. Hiller, Geometry of Coxeter Groups, Research Notes in Math. no. 54, Pitman, Boston, 1982.

R. Howe, Tamely ramified supercuspidal representations of GL(n), Pac. J. Math. 73 (1977), pp. 437-460.

R. Howe, Some qualitative results on the representation theory of GL(n) over a p-adic field, Pac. J. Math. 73 (1977), pp. 479-538.

R. Howe, Kirillov thoery for compact p-adic groups, Pac. J. Math. 73 (1977), pp. 365-381.

R. Howe and A. Moy, Minimal K-types for GL(n) over a p-adic field, Asterisque 171-2 (1989), pp. 257-273.

R. Howe and A. Moy, Hecke algebra isomorphisms for GL(n) over a p-adic field, J. Alg. 131 (1990), pp. 388-424.

J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, 1990.

N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo 10 (1964), pp. 215-236.

N. Iwahori, Generalized Tits system (Bruhat decomposition) on p-adic semi-simple groups, in Proc. Symp. Pure Math. no. 9, AMS, Providence, 1966, pp. 71-83.

N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S. 25 (1965), pp. 5-48.

N. Jacobson, Cayley numbers and simple Lie algebras of type G, Duke Math. J. 5 (1939), pp. 775-783.

N. Jacobson, Some groups of transformations defined by Jordan algebras, I-III, J. Reine und Angew. Math. 201 (1959), pp. 187-195; 204 (1960), pp. 74-98; 207 (1961), pp. 61-85.

H. Jacquet, Representations des groupes lineaires p-adiques, Theory of Group Representations and Harmonic Analysis, CIME, II Ciclo, Montecatini Terme 1970, pp. 119-220, Edizioni Cremonese, Roma 1971.

H. Jacquet, Sur les representations des groupes reductifs p-adiques, C.R. Acad. Sci. Paris 280 (1975), pp. 1271-1272.

H. Jacquet, Generic representations, Non-commutative Harmonic Analysis, Lecture Notes in Math. 587, pp. 91-101, Springer, 1977.

R.P. Johnson, Orthogonal groups of local anisotropic spaces, Amer. J. Math. 91 (1969), pp. 1077-1105.

S.-I. Kasai, A classification of simple weakly spherical homogeneous spaces, I, J. of Algebra 182 (1996), pp. 235-255.

S.I. Kato, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci Univ. Tokyo 28 (1982), pp. 929-943.

S.I. Kato, A realization of irreducible representations of affine Weyl groups, Indag. Math. 45 (1983), pp. 193-201.

S.I. Kato, On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 55 (1985), pp. 103-130.

S.I. Kato, Duality for representations of a Hecke algebra, Proc. A.M.S. 119 (1993), pp. 941-946.

D. Kazhdan, Cuspidal geometry of p-adic groups, J. D'analyse Math. 47 (1986), pp. 1-36.

D. Kazhdan, Representations of groups over closed local fields, J. D'analyse Math. 47 (1986), pp. 175-179.

D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Inv. Math. 53 (1979), pp. 165-184.

D. Kazhdan and G. Lusztig, Equivariant K-theory and representations of Hecke algebras, II, Inv. Math. 80 (1985), pp. 209-231.

D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Inv. Math. 87 (1987), pp. 153-215.

D. Keys, On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pac. J. Math. 101 (1982), pp. 351-388.

D. Keys, Principal series representations of special unitary groups over local fields, Comp. Math. 51 (1984), pp. 115-130.

B. Kostant, On convexity, the Weyl group, and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. 6 (1973), pp. 413-455.

M. Kneser, Galois-Kohomologie halbeinfacher Gruppen uber p-adischen Korpern, I,II, Math. Z. 88 (1965), pp. 250-272.

M. Kneser, Lectures on Galois Cohomology of Classical Groups, Tata Institute, Bombay, 1965.

S.S. Kudla, The local Langlands correspondence: the non-archimedean case, Proc. Symp. Pure Math. 55 part 2 (1994), p. 365-391.

S.S. Kudla and S. Rallis, Degenerate principal series and invariant distributions, Israel J. Math. 69 (1990), pp. 25-45.

S.S. Kudla and S. Rallis, Ramified degenerate principal series representations for Sp(n), Israel J. Math. 78 (1992), pp. 209-256.

P.C. Kutzko, On the supercuspidal representations of GL(2), Amer. J. Math. 100 (1978), pp. 43-60.

P.C. Kutzko, The local Langlands conjecture for GL(2) of a local field, Ann. Math. 112 (1980), pp. 381-412.

P.C. Kutzko, On the restriction of supercuspidal representations to compact open subgroups, Duke J. Math. 52 (1985), pp. 753-764.

P.C. Kutzko, On the supercuspidal representations of GL(n) and other groups, Proc. Intern. Cong. Math. Berkeley 1986, pp. 853-861, A.M.S., Providence, 1987.

P.C. Kutzko, Character formulas for supercuspidal representations of GL(n), n prime, Amer. J. Math. 109 (1987), pp. 201-222.

P.C. Kutzko, Toward a classification of the supercuspidal representations of GL(n), J. London Math. Soc. 37 (1988), pp. 265-274.

P.C. Kutzko and A. Moy, On the local Langlands conjecture in prime dimension, Ann. of Math. 121 (1985), pp. 495-517.

E. Landvogt, A Compactification of the Bruhat-Tits Building, Lecture Notes in Math. 1619, Springer, 1996.

R.P. Langlands, Base Change for GL(2), Ann. Math. Studies 96, Princeton Univ. Press, 1980.

W. Lanherr, Uber einfache Liesche Ringe, Abh. Math. Sem. Univ. Hamburg 11 (1936), pp. 41-64.

G. Lusztig, Some examples of square-integrable representations of semisimple p-adic groups, Trans. A.M.S. 277 (1983), pp. 623-653.

G. Lusztig, Left cells in Weyl groups, Lie Group Representations I, Lecture Notes in Math. 1024, pp. 99-111, Springer, 1984.

G. Lusztig, Characters of reductive groups over a finite field, Ann. of Math. Studies no. 107, Princeton Univ. Press, 1984.

G. Lusztig, Cells in affine Weyl groups, Algebraic Groups and Related Topics, Adv. Studies in Pure Math. 6, pp. 225-287, North-Holland, Amsterdam, 1985.

G. Lusztig, The two-sided cells of the affine Weyl group of type $A_n$, Infinite-dimensional groups with applications, pp. 275-283, Springer, 1985.

G. Lusztig, Sur les cellules gauches des groupes de Weyl, C.R. Acad. Sci. Paris Math. 302 (1986), pp. 5-8.

G. Lusztig, Cells in affine Weyl groups, II, J. Algebra 109 (1987), pp. 536-548.

G. Lusztig, Leading coefficients of character values of Hecke algebras, Proc. Symp. Pure Math. 4 (1987), pp. 235-262.

G. Lusztig, Cells in affine Weyl groups, III, J. Fac. Sci. Univ. Tokyo Math. 34 (1987), pp. 223-243.

G. Lusztig, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo Math. 36 (1989), pp. 297-328.

G. Lusztig, Representations of affine Hecke algebras, Asterisque 171-172 (1989), pp. 73-84.

G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), pp. 599-635.

G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), pp. 447-498.

I.G. MacDonald, Spherical functions on a group of p-adic type, Ramanuan Inst. Publ. 2, Univ. of Madras, 1971.

H. Matsumoto, Generateurs et relations des groupes de Weyl generalises, C.R. Acad. Sci. Paris 259 (1964), pp. 3419-3422.

H. Matsumoto, Analyse Harmonique dans les systems de Tits bornologiques de type affine, Lecture Notes in Math. no. 590, Springer-Verlag, 1977.

M. Matsumoto, Une theoreme de Sylow des groupes semisimple p-adiques, C.R. Acad. Sci. 262 (1966), pp. 425-427.

C. Moeglin, M.-F. Vigneras, and J.-L. Waldspurger, Correspondence de Howe sur un corp p-adique, Lecture Notes in Math. 1291, Springer, 1987.

C. Moeglin and J.-L. Waldspurger, Modeles de Whittaker degeneres pour des groupes p-adiques, Math. Z. 196 (1987), pp. 427-452.

R. Moody and K. Teo, Tits systems with crystallographic Weyl groups, J. Algebra 21 (1972), pp. 178-190.

L.E. Morris, Tamely ramified supercuspidal representations of classical groups I: Filtrations, Ann. Scient. Ec. Norm. Sup. 24 (1991), pp. 705-738.

L.E. Morris, Tamely ramified supercuspidal representations of classical groups II: Representations, Ann. Scient. Ec. Norm. Sup. 25 (1992), pp. 233-274.

L.E. Morris, Fundamental G-strata for p-adic classical groups, Duke Math. J. 64 (1991), pp. 501-553.

L.E. Morris, The admissible dual via restriction to open compact subgroups, Contemp. Math. 145, pp. 145-154, A.M.S., Providence, 1993.

L.E. Morris, Tamely ramified intertwining algebras, Inv. Math. 114 (1993), pp. 233-274.

A. Moy, The irreducible orthogonal and symplectic Galois representations of a p-adic field (the tame case), J. No. Th. 19 (1984), pp. 341-344.

A. Moy, Representations of U(2,1) over a p-adic field, J. reine und angew. Math. 372 (1986), pp. 178-208.

A. Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), pp. 863-930.

A. Moy, Representations of GSP(4) over a p-adic field, I, Comp. Math. 66 (1988), pp. 237-284.

A. Moy, Representations of GSP(4) over a p-adic field, II, Comp. Math. 66 (1988), pp. 285-328.

A. Moy and G. Prasad, Unramified maximal K-types for p-adic groups, Inv. Math. 116 (1994), pp. 393-408.

F. Murnaghan, Asymptotic behavior of supercuspidal characters of p-adic GSp(4), Comp. Math. 80 (1991), pp. 15-54.

F. Murnaghan, Characters of supercuspidal representations of SL(n), Pac. J. Math. 170, (1995), pp. 217-235.

F. Murnaghan, Local character expansions and Shalika germs for GL(n), Math. Ann. 304 (1996), pp. 423-455.

F. Murnaghan, Characters of supercuspidal representations of classical groups, Ann. Sci. Ec. Norm. Sup. 29 (1996), pp. 49-105.

F. Murnaghan and J. Repka, Reducibility of induced representations of split classical p-adic groups, preprint, February 1996.

G. Prasad, Elementary proof of a theorem of Bruhat-Tits and Rousseau, and of a theorem of Tits, Bull. Math. Soc. France 110 (1982), pp. 197-202.

G. Prasad, Trilinear forms for representations of GL(2) and local epsilon-factors, Comp. Math. 75 (1990), pp. 1-46.

G. Prasad, Invariant forms for representations of GL(2) over a local field, Amer. J. Math. 114 (1992), pp. 1317-1363.

D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group, Adv. Math. 28 (1978), pp. 101-128.

K.G. Ramanathan, Quadratic forms over involutorial division algebras, J. Indian Math. Soc. 20 (1956), p. 227-257.

M. Reeder, On certain Iwahori invariants in the unramified principal series, Pac. J. Math. 153 (1992), pp. 313-342.

M. Reeder, Whittaker functions, prehomogeneous vector spaces, and standard representations of p-adic groups, J. reine. und angew. Math. 450 (1994), pp. 83-121.

M. Reeder, On the Iwahori spherical discrete series of p-adic Chevalley groups: formal degrees and L-packets, Ann. Sci. Ec. Norm. Sup. 27 (1994), pp. 463-491.

M. Reeder, Nonstandard intertwining operators and the structure of unramified principal series representations of p-adic groups, preprint 1995.

M. Reeder, Whittaker models and unipotent representations of p-adic groups, preprint, 1995.

H. Reimann, Representations of tamely ramified p-adic division and matrix algebras, J. No. Th. 38 (1991), pp. 58-105.

F. Rodier, Whittaker models for admissible representations of reductive p-adic split groups, Harmonic Analysis on Homogeneous Spaces, Proc. Symp. Pure Math. 26, A.M.S., 1973.

F. Rodier, Decomposition de la serie principale des groupes reductifs p-adiques, Non-commutative harmonic analysis, pp. 408-424, Lecture Notes in Math. 880, Springer, 1981.

F. Rodier, Sur les facteurs euleriens associes aux sous-quotients des series principales des groupes reductifs p-adiques, Publ. Math. Univ. Paris VII 15 (1981), pp. 107-133.

F. Rodier, Representations de GL(n,k) ou k est un corps p-adique, Asterisque 1992-93 (1982), pp. 201-218, Sem. Bourb. 1981-82, exp. 583.

J. Rogawski, An application of the building to orbital integrals, Comp. Math. 42 (1981), pp. 417-423.

J. Rogawski, On modules over the Hecke algebra of a p-adic group, Inv. Math. 79 (1985), pp. 443-465.

M. Ronan, Lectures on Buildings, Academic Press, 1989.

M. Ronan, Buildings: Main Ideas and Applications, I. Main Ideas, Bull. London Math. Soc. 24 (1992), pp. 1-51.

M. Ronan, Buildings: Main Ideas and Applications, II. Arithmetic Groups, Buildings, and Symmetric Spaces, Bull. London Math. Soc. 24 (1992), pp. 97-124.

M. Ronan and J. Tits, Building buildings, Math. Ann. 278 (1987), pp. 291-306.

G. Rousseau, Immeubles spheriques et theorie des invariants, C.R. Acad. Sci. Paris 286 (1978), pp. 247-250.

I. Satake, Some remarks to the preceding paper of Tsukamoto, J. Math. Soc. Japan 13 (1961), pp. 401-409.

I. Satake, On the theory of reductive algebraic groups over a perfect field, J. Math. Soc. Japan 15 (1963), pp. 210-235.

I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. I.H.E.S. 18 (1963), pp. 5-69.

W. Scharlau, Quadratic and Hermitian Forms, Springer, 1985.

P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, preprint, 1995.

J.-P. Serre, Cohomologie des groupes discrets, Prospects in Math., Ann. of Math. Studies 70, Princeton Univ. Press, 1971.

J.-P. Serre, Arbres, Amalgames, et $SL_2$ Asterisque 46 (1977); English trans. Trees, Springer-Verlag, 1980.

J.-P. Serre, Cohomologie Galoisienne, Springer, Lecture Notes in Math. 5, 1964; 5th edition, 1994.

F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. Math. 132 (1990), pp. 273-330.

F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J. 66 (1992), pp. 1-41.

G. Shimura, Arithmetic of alternating forms and quaternion hermitian forms, J. Math. Soc. Japan 15 (1963), pp. 33-65.

G. Shimura, Arithmetic of unitary groups, Ann. of Math. 79 (1964), pp. 369-409.

T. Shintani, On certain square-integrable unitary representations of some p-adic linear groups, J. Math. Soc. Japan 20 (1968), pp. 522-565.

A.J. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Math. Notes, Princeton Univ. Press, 1979.

A.J. Silberger, The Langlands quotient theorem for p-adic groups, Math. Ann. 236 (1978), pp. 95-104.

L. Solomon, The Steinberg character of a finite group with a BN-pair, Theory of Groups (ed. Brauer and Sah), pp. 213-221, Benjamin, New York, 1969.

T.A. Springer, The projective octave plane, I,II, Proc. Kon. Ned. Akad. Wet. 63 (1960), p. 74-101.

T.A. Springer, On the equivalence of quadratic forms, Indag. Math. 21 (1959), pp. 241-253.

T.A. Springer, Linear Algebraic Groups, Springer, 1981.

T.A. Springer, Conjugacy classes in algebraic groups, Group Theory, Beijing 1984, pp. 175-209, Lecture Notes in Math. no. 1185, Springer, 1986.

R. Steinberg, Variations on a theme of Chevalley, Pac. J. Math. 9 (1959), pp. 875-891.

R. Steinberg, Finite reflection groups, Trans. Amer. Math. Soc. 91 (1959), pp. 493-504.

R. Steinberg, Regular elements of semisimple algebraic groups, Publ. Math. I.H.E.S. 25 (1965), pp. 281-312.

R. Steinberg, Prime power representations of finite linear groups, I, II, Canad. J. Math. 8 (1956), pp. 580-581; 9 (1957), pp. 347-351.

M. Tadic, Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. Ec. Norm. Sup. 19 (1986), pp. 335-382.

M. Tadic, Induced representations of GL(n,A) for p-adic division algebras A, J. reine und angew. Math. 405 (1990), pp. 48-77.

M. Tadic, On Jacquet modules of induced representations of p-adic symplectic groups, Harmonic Analysis on Reductive Groups Bowdoin College 1989, Progr. in Math. vol 101, pp. 305-314, Birkhauser, Boston, 1991.

M. Tadic, Representations of p-adic symplectic groups, Comp. Math. 90 (1994), pp. 123-181.

M. Tadic, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. of Algebra 177 (1995), pp. 1-33.

J. Tits, Le plan projectif des octaves et les groups de Lie exceptionnels, Acad. Roy. Belg. Bull. Cl. Sci. 39 (1953), pp. 309-329.

J. Tits, Le plan projectif des octaves et les groups exceptionnels $E_6$ et $E_7$, Acad. Roy. Belg. Bull. Cl. Sci. 40 (1954), pp. 29-40.

J. Tits, Sur certaines classes d'espaces homogenes de groups de Lie, Mem. Acad. Roy. Belg. 29 (1955).

J. Tits, Sur la classification des groupes algebriques semi-simples, C. R. Acad. Sci. Paris 249 (1959), pp. 1438-1440.

J. Tits, Sur les groupes algebriques: theoremes fondamentaux de structure; classification des groupes semi-simples et geometries associees, Centro Internazionale Matematico estivo (C.I.M.E.) Saltino di Vallombrosa 1959, Rome, 1960.

J. Tits, Groupes algebriques semi-simples et geometries associees, Proc. Coll. Algebraical and Topological Foundations of Geometry, pp. 175-192, Utrecht 1959, Pergammon Press, Oxford, 1962.

J. Tits, Theoreme de Bruhat et sous-groupes paraboliques, C.R. Acad. Sci. Paris Ser. A 254 (1962), pp. 2910-2912.

J. Tits, Une class d'algebres de Lie en relation avec les algebres de Jordan, Proc. Ned. Akad. Wet. 65 (1962), pp. 530-535.

J. Tits, Groupes semi-simples isotropes, Collloque sur la Theorie des groupes algebriques, C.B.R.M. Bruxelles, June 1962, pp. 137-147.

J. Tits, Geometries polyedriques et groupes simples, Atti della II Riunione del Groupement de Mathematiciens d'Expression Latine, pp. 66-88, Firenze 1961, Edizioni Cremonese, Rome, 1963.

J. Tits, Groupes simples et geometries associees, Proc. Intern. Congress Math. Stockholm, 1962, pp. 197-221, Inst. Mittag-Loeffler, Djursholm, 1963.

J. Tits, Algebraic and abstract simple groups, Ann. Math. 80 (1964), pp. 313-329.

J. Tits, Structures de groupes de Weyl, Sem. Bourb. 1964-65, expose no. 288, Feb. 1965.

J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. 9 (1966), pp. 33-62.

J. Tits, Le Probleme des mot dans les groupes de Coxeter, 1st Naz. Alta Mat., Symp. Math., 1 (1968), pp. 175-185.

J. Tits, Formes quadratiques, groupes orthogonaux, et algebres de Clifford, Inv. Math. 5 (1968), pp. 19-41.

J. Tits, Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Math. 386, Springer-Verlag, 1974.

J. Tits, On buildings and their applications, Proc. Intern. Cong. Math., Vancouver 1974, pp. 209-220, Montreal, 1975.

J. Tits, Classification of buildings of spherical type, and moufang polygons: a survey, Atti. Coll. Int. Teorie Combinatorie, Accad. Naz. Lincei, Rome, 1973, vol. 1 (1976), pp. 229-246.

J. Tits, Systemes generateurs de groups de congruence, C.R. Acad. Sci. 283 (1976), pp. 693-695.

J. Tits, Groupes de Whitehead de groupes algebriques simples sur un corps (d'apres V.P. Platonov et alia), Sem. Bourb. exp. 505 (1976/77), pp. 218-236, Lecture Notes in Math., Springer, 1978.

J. Tits, Non-existence de certains polygones generalises, I, II, Inv. Math. 36 (1976), pp. 275-284; 51 (1979), pp. 267-269.

J. Tits, Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Inv. math. 45 (1977), pp. 283-295.

J. Tits, Reductive groups over local fields, in Proc. Symp. Pure Math. 33, vol. 1, AMS, Providence, 1979, pp. 29-69.

J. Tits, Buildings and Buekenhout geometries, Finite Simple Groups, II, Proc. Symposium Durham 1978 (ed. M.J. Collins), pp. 309-320, Academic Press, London, 1980.

J. Tits, A local approach to buildings, The Geometric Vein, Coxter Festschrift (ed. C. Davis, B Grunbaum, F.A. Sherk), pp. 519-547, Springer, 1981.

J. Tits, Moufang octagons and the Ree groups of type ${^2F_4$}, Amer. J. Math. 105 (1983), pp. 539-594.

J. Tits, Liescher Gruppen und Algebren, Springer, Berlin, 1983.

J. Tits, Groups and group functors attached to Kac-Moody data, in Arbeitstagung, Bonn, 1984, Lecture Notes in Math 1111, Springer-Verlag, 1985, pp. 193-223.

J. Tits, Immeubles de type affine, Buildings and the Geometry of Diagrams, Proc. C.I.M.E. Como 1984 (ed. L.A. Rosati), pp. 159-190, Lecture Notes in Math. 1181, Springer, 1986. ( There is a later correction in which an axiom is modified).

J. Tits, Buildings and Group Amalgamations, London Math. Soc. Lecture Notes 121 (Proc. of Groups - St. Andrews 1985), pp. 110-127, Cambridge Univ. Press, 1986.

J. Tits, Groups and group functors attached to Kax-Moody data, Lectures Notes in Math. 1111, pp. 193-223, Arbeitstagung Bonn 1984, Springer, 1985.

J. Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. of Algebra, 105 (1987), pp. 542-573.

J.B. Tunnell, On the local Langlands conjecture for GL(2), Inv. Math. 46 (1978), pp. 179-200.

J.B. Tunnell, Local epsilon-factors and characters of GL(2), Amer. J. Math. 105 (1983), pp. 1277-1307.

T. Tsukamoto, On the local theory of quaternionic anti-hermitian forms, J. Math. Soc. Japan 13 (1961), pp. 387-400.

B.L. van der Waerden, Gruppen von Linearen Transformationen, Springer, Berlin, 1935.

H. Van Maldegham, Valuations on PTR's induced by triangle buildings, Geom. Dedicata 26 (1988), pp. 29-84.

E. B. Vinberg, Discrete linear groups generated by reflections, Math. U.S.S.R. Izvestija 5 (1971), pp. 1083-1119.

J.-L. Waldspurger, Algebres de Hecke et induites de representations cuspidales, pour GL(n), J. reine und angew. Math. 370 (1986), pp. 127-191.

A. Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. 24 (1961), pp. 589-623.

A. Weil, Sur la theorie des formes quadratiques, Colloque sure la theorie des groupes algebriques, Bruxelles, pp. 9-22, Louvain-Paris, 1962.

A. Weil, On the arithmetical theory of the classical groups, Proc. Arithm. Algebraic Geom., New York, 1963, pp. 1-3.

E. Witt, Schiefkorper uber diskret Bewertung Korpern, J. reine und angew. Math. 176 (1936), pp. 153-156.

N. Xi, Representations of Hecke Algebras, Lecture Notes in Math. 1587, Springer, 1994.

A.V. Zelevinsky, Induced represenatations of reductive p-adic groups II: On irreducible representations of GL(n), Ann. Scient. Ec. Norm. Sup. 13 (1980), pp. 165-210.

© 1996, Paul Garrett
The University of Minnesota explicitly requires that I state that "The views and opinions expressed in this page are strictly those of the page author. The contents of this page have not been reviewed or approved by the University of Minnesota."