(August 17, 2014)

Outline of basic complex analysis

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Construction of complex numbers as quotient ring of polynomials with real coefficients: $\mathbb{C} = \mathbb{R}[X]/\langle X^2 + 1 \rangle$

Elementary algebra and geometry of complex numbers: multiplication is (a+bi)(c+di) = (ac-bd)+i(bc+ad), conjugation $\overline{a+bi} = a-bi$ is the unique \mathbb{R} -linear field automorphism of \mathbb{C} other than the identity map.

Absolute value $|a + bi| = \sqrt{a^2 + b^2} = \sqrt{(a + bi)(a - bi)} = \sqrt{(a + bi)(a + bi)}$. Conjugation preserves multiplication in the sense that $\overline{\alpha\beta} = \overline{\alpha} \cdot \overline{\beta}$ so absolute value preserves multiplication.

Metric: for $\alpha, \beta \in \mathbb{C}$, distance from α to β is $|\alpha - \beta|$. Matches Euclidean distance.

The exponential function $e^z = \sum_{n\geq 0} z^n/n!$, property $e^{z+w} = e^z \cdot e^w$ from binomial theorem $(x+y)^n = \sum_{j=0}^n {n \choose j} x^j y^{n-j}$, where ${n \choose j} = \frac{n!}{j! (n-j)!}$

Under multiplication, lengths multiply, angles add

Euler's identity $e^{i\theta} = \cos \theta + i \sin \theta$, trig functions in terms of exponentials: $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$, trigonometric identities

Abel's theorem: *real-analytic* functions, that is, functions on open subsets of \mathbb{R} given by convergent power series, are *differentiable*, and the derivative is given by term-wise differentiation of the power series

Complex differentiation: $f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$ with h complex

Abel's theorem for complex power series: convergent power series are *complex*-differentiable

Complex-differentiable functions f preserve angles at points z_o with $f'(z_o) \neq 0$, that is, are conformal

Examples of conformal mappings

Path integrals $\int_{\gamma} f = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$ for $\gamma: [a, b] \to \mathbb{C}$. Independence of parametrization

Winding number of γ about z_o is $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-z_o}$. Introduction to homotopy and homology

Cauchy-Goursat theorem: complex-differentiable implies vanishing of path integrals $\int_{\gamma} f(z) dz$ around triangles γ

Simplest case of Cauchy formulas: for γ a simple closed curve traced counter-clockwise, with z_o in its interior, $f(z_o) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z) dz}{z-z_o}$, and $f^{(n)}(z_o) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z) dz}{(z-z_o)^{n+1}}$,

Cauchy: complex-differentiable functions f have convergent power series expansions $f(z) = \sum_{n \ge 0} c_n (z - z_o)^n$, where as expected $c_n = \frac{f^{(n)}(z_o)}{n!}$

Liouville's theorem: bounded complex-differentiable functions are constants. Corollary (sometimes called the fundamental theorem of algebra): any complex-coefficiented polynomial of degree n has n zeros in \mathbb{C} .

Complex differentiability of f implies Cauchy-Riemann equation $\frac{\partial f}{\partial \overline{z}} = 0$. Separating real and imaginary parts, with f(x+iy) = u(x,y) + iv(x,y), the Cauchy-Riemann equation becomes

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial iy} = -i\frac{\partial f}{\partial y}$$
 or $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

Holomorphy as synonym for complex-differentiability and for complex-analyticity

Identity principle: If two holomorphic functions on a connected open set agree at a sequence of points having a limit point in that open set, then the two functions are equal *everywhere*. Applications to proving identities. Logarithms $\log z = \int_1^z \frac{dz}{z}$, multi-valued *argument* function. Failure of $\log(zw) = \log z + \log w$ without additional hypotheses

Argument principle: the number of 0's of f, counting multiplicities, inside a simple closed curve γ is $\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}$.

Isolated singularities, Laurent expansions $f(z) = \sum_{n \in \mathbb{Z}} c_n (z - z_o)^n$ for $r' < |z - z_o| < R'$. Formulas for coefficients, for r' < r < R < R', with $\gamma_r = \{z : |z - z_o| = r\}$ and $\gamma_R = \{z : |z - z_o| = R\}$,

$$c_n = \begin{cases} \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(\zeta) \, d\zeta}{(\zeta - z_o)^{n+1}} & \text{(for } n \ge 0) \\ \\ \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\zeta) \, d\zeta}{(\zeta - z_o)^{-n+1}} & \text{(for } n < 0) \end{cases}$$

The residue $\operatorname{Res}_{z=z_o} f(z)$ of f at isolated singularity z_o is the -1 Laurent coefficient.

Simple case of *residue theorem*: for simple closed curve γ , summing over (isolated) singularities z_o of f inside γ , $\int_{\gamma} f(z) dz = 2\pi i \sum_{z_o} \text{Res}_{z=z_o} f(z)$.

Evaluation of integrals by residues: examples

Basic ideas about homotopy and homology, and fancier versions of Cauchy's theorems

Maximum modulus principle: maximum absolute value occurs on the *boundary*, and is strictly greater than interior points except for *constant* functions.

Rouché's theorem counting zeros of nearby functions: for a simple closed curve γ in an open set U, and f, g holomorphic on U with |f - g| < |f| on γ , then f and g have the same number of zeros inside γ .

Corollaries of Rouché: open mapping theorem, analytic dependence of roots on parameters, ...

More on isolated singularities: poles (finitely-many negative-index Laurent terms) versus *essential* singularities (infinitely-many negative-index Laurent terms). *Meromorphic* functions have only *poles*.

Casorati-Weierstrass theorem: in every neighborhood of an essential singularity of a function, the function comes arbitrarily near every complex value.

Morera's theorem: vanishing of integals along small closed paths implies holomorphy. Indeed, vanishing of integrals along all small *triangles* suffices.

Corollary: uniform pointwise limits of holomorphic functions are holomorphic

Corollary: Schwarz' reflection principle: Let U be a non-empty open set inside the upper half-plane, with the closure of U meeting \mathbb{R} in an interval I. Any function f holomorphic on U and extending continuously to $U \cup I$ extends to a holomorphic function on $U \cup I \cup U^{\text{ref}}$, where U^{ref} is the copy of U reflected across the real axis, namely, $U^{\text{ref}} = \{\overline{z} : z \in U\}$, by the formula $f(\overline{z}) = \overline{f(z)}$.

Variant reflection principle: replace the real line with the unit circle, and complex conjugation $z \to \overline{z}$ with $z \to 1/\overline{z}$.

Linear fractional (Möbius) transformations $\begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \to \frac{az+b}{cz+d}$

Schwarz' lemma: For f holomorphic on the open unit disk in \mathbb{C} with |f(z)| < 1 on that disk and f(0) = 0, then $|f(z)| \le |z|$ for all z in the disk, and $|f'(0)| \le 1$. Further, if |f(z)| = |z| for some z, or if |f'(0)| = 1, then $f(z) = c \cdot z$ for some |c| = 1.

Automorphisms of the Riemann sphere, of the disk, of the upper half-plane. Hyperbolic 2-space: Poincaré model, Beltrami model.

Riemann mapping theorem

Example: disks with concentric slits

Harmonic functions: mean value theorem, Poisson's integral formula for disks

Harmonic functions in punctured disks

Partial fraction expansions of functions with prescribed poles, such as

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$$

Weierstrass product expansions of entire functions with given zeros. Example: Euler's factorization

$$\sin \pi z = \pi z \cdot \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$

Order and genus of entire functions

Hadamard product expansions of entire functions

Differential equations u'' + b(z)u' + c(z)u = 0, ordinary points, regular singular points, asymptotics

Algebraic functions and Riemann surfaces

Elliptic integrals, elliptic functions (doubly-periodic meromorphic functions). Weierstrass' equation $\wp'(z)^2 = 4\wp(z)^3 - 60g_2\wp(z) - 140g_3$

Elliptic modular functions

Paul Garrett: Outline of basic complex analysis (August 17, 2014)

Genus of a compact, connected surface is the number of handles (!?!?!)

The uniformization theorem: every compact, connected Riemann surface of $genus \ge 2$ is a quotient of the unit disk. (Genus 1 compact surfaces are quotients of \mathbb{C} , and genus 0 surfaces are the Riemann sphere \mathbb{P}^1 .)

Riemann's existence theorem: every compact, connected Riemann surface admits a non-constant meromorphic function, so is a covering

Riemann-Hurwitz formula for genus of covering-space in terms of *ramification* over the base space.

Riemann-Roch theorem

Gamma function (Euler's integral) $\Gamma(s)=\int_0^\infty e^{-t}\,t^s\,\frac{dt}{t},$ Stirling's asymptotic formula

Riemann's zeta function $z(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, Euler's product $z(s) = \prod_{p \text{ prime }} \frac{1}{1-p^{-s}}$,

Jensen's formula counting zeros

Phragmén-Lindelöf theorem

Hadamard's three-circle theorem

Riemann's Explicit Formula

Topics from several complex variables...