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Construction of complex numbers as quotient ring of polynomials with real coefficients: C = R[X]/〈X2 + 1〉

Elementary algebra and geometry of complex numbers: multiplication is (a+bi)(c+di) = (ac−bd)+i(bc+ad),
conjugation a+ bi = a− bi is the unique R-linear field automorphism of C other than the identity map.

Absolute value |a + bi| =
√
a2 + b2 =

√
(a+ bi)(a− bi) =

√
(a+ bi)(a+ bi). Conjugation preserves

multiplication in the sense that αβ = α · β so absolute value preserves multiplication.

Metric: for α, β ∈ C, distance from α to β is |α− β|. Matches Euclidean distance.

The exponential function ez =
∑
n≥0 z

n/n!, property ez+w = ez · ew from binomial theorem (x + y)n =∑n
j=0

(
n
j

)
xj yn−j , where

(
n
j

)
= n!

j! (n−j)!

Under multiplication, lengths multiply, angles add

Euler’s identity eiθ = cos θ+i sin θ, trig functions in terms of exponentials: cos z = eiz+e−iz

2 , sin z = eiz−e−iz

2i ,
trigonometric identities

Abel’s theorem: real-analytic functions, that is, functions on open subsets of R given by convergent power
series, are differentiable, and the derivative is given by term-wise differentiation of the power series

Complex differentiation: f ′(z) = limh→0
f(z+h)−f(z)

h with h complex

Abel’s theorem for complex power series: convergent power series are complex-differentiable

Complex-differentiable functions f preserve angles at points zo with f ′(zo) 6= 0, that is, are conformal

Examples of conformal mappings

Path integrals
∫
γ
f =

∫ b
a
f(γ(t)) γ′(t) dt for γ : [a, b]→ C. Independence of parametrization

Winding number of γ about zo is 1
2πi

∫
γ

dz
z−zo . Introduction to homotopy and homology

Cauchy-Goursat theorem: complex-differentiable implies vanishing of path integrals
∫
γ
f(z) dz around

triangles γ

Simplest case of Cauchy formulas: for γ a simple closed curve traced counter-clockwise, with zo in its interior,

f(zo) = 1
2πi

∫
γ
f(z) dz
z−zo , and f (n)(zo) = n!

2πi

∫
γ

f(z) dz
(z−zo)n+1 ,

Cauchy: complex-differentiable functions f have convergent power series expansions

f(z) =
∑
n≥0 cn (z − zo)n, where as expected cn = f(n)(zo)

n!

Liouville’s theorem: bounded complex-differentiable functions are constants. Corollary (sometimes called the
fundamental theorem of algebra): any complex-coefficiented polynomial of degree n has n zeros in C.

Complex differentiability of f implies Cauchy-Riemann equation ∂f
∂z = 0. Separating real and imaginary

parts, with f(x+ iy) = u(x, y) + iv(x, y), the Cauchy-Riemann equation becomes

∂f

∂x
=

∂f

∂iy
= −i∂f

∂y
or

∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y
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Holomorphy as synonym for complex-differentiability and for complex-analyticity

Identity principle: If two holomorphic functions on a connected open set agree at a sequence of points having
a limit point in that open set, then the two functions are equal everywhere. Applications to proving identities.

Logarithms log z =
∫ z
1
dz
z , multi-valued argument function. Failure of log(zw) = log z + logw without

additional hypotheses

Argument principle: the number of 0’s of f , counting multiplicities, inside a simple closed curve γ is 1
2πi

∫
γ
f ′

f .

Isolated singularities, Laurent expansions f(z) =
∑
n∈Z cn (z − zo)n for r′ < |z − zo| < R′. Formulas for

coefficients, for r′ < r < R < R′, with γr = {z : |z − zo| = r} and γR = {z : |z − zo| = R},

cn =


1

2πi

∫
γR

f(ζ) dζ

(ζ − zo)n+1
(for n ≥ 0)

1

2πi

∫
γr

f(ζ) dζ

(ζ − zo)−n+1
(for n < 0)

The residue Resz=zof(z) of f at isolated singularity zo is the −1 Laurent coefficient.

Simple case of residue theorem: for simple closed curve γ, summing over (isolated) singularities zo of f inside
γ,
∫
γ
f(z) dz = 2πi

∑
zo

Resz=zof(z).

Evaluation of integrals by residues: examples

Basic ideas about homotopy and homology, and fancier versions of Cauchy’s theorems

Maximum modulus principle: maximum absolute value occurs on the boundary, and is strictly greater than
interior points except for constant functions.

Rouché’s theorem counting zeros of nearby functions: for a simple closed curve γ in an open set U , and f, g
holomorphic on U with |f − g| < |f | on γ, then f and g have the same number of zeros inside γ.

Corollaries of Rouché: open mapping theorem, analytic dependence of roots on parameters, ...

More on isolated singularities: poles (finitely-many negative-index Laurent terms) versus essential
singularities (infinitely-many negative-index Laurent terms). Meromorphic functions have only poles.

Casorati-Weierstrass theorem: in every neighborhood of an essential singularity of a function, the function
comes arbitrarily near every complex value.

Morera’s theorem: vanishing of integals along small closed paths implies holomorphy. Indeed, vanishing of
integrals along all small triangles suffices.

Corollary: uniform pointwise limits of holomorphic functions are holomorphic

Corollary: Schwarz’ reflection principle: Let U be a non-empty open set inside the upper half-plane, with
the closure of U meeting R in an interval I. Any function f holomorphic on U and extending continuously
to U ∪ I extends to a holomorphic function on U ∪ I ∪U ref , where U ref is the copy of U reflected across the
real axis, namely, U ref = {z : z ∈ U}, by the formula f(z) = f(z).

Variant reflection principle: replace the real line with the unit circle, and complex conjugation z → z with
z → 1/z.
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Linear fractional (Möbius) transformations

(
a b
c d

)
: z → az + b

cz + d

Schwarz’ lemma: For f holomorphic on the open unit disk in C with |f(z)| < 1 on that disk and f(0) = 0,
then |f(z)| ≤ |z| for all z in the disk, and |f ′(0)| ≤ 1. Further, if |f(z)| = |z| for some z, or if |f ′(0)| = 1,
then f(z) = c · z for some |c| = 1.

Automorphisms of the Riemann sphere, of the disk, of the upper half-plane. Hyperbolic 2-space: Poincaré
model, Beltrami model.

Riemann mapping theorem

Example: disks with concentric slits

Harmonic functions: mean value theorem, Poisson’s integral formula for disks

Harmonic functions in punctured disks

Partial fraction expansions of functions with prescribed poles, such as

π2

sin2 πz
=
∑
n∈Z

1

(z − n)2

Weierstrass product expansions of entire functions with given zeros. Example: Euler’s factorization

sinπz = πz ·
∞∏
n=1

(
1− z2

n2

)

Order and genus of entire functions

Hadamard product expansions of entire functions

Differential equations u′′ + b(z)u′ + c(z)u = 0, ordinary points, regular singular points, asymptotics

Algebraic functions and Riemann surfaces

Elliptic integrals, elliptic functions (doubly-periodic meromorphic functions). Weierstrass’ equation ℘′(z)2 =
4℘(z)3 − 60g2℘(z)− 140g3

Elliptic modular functions
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Genus of a compact, connected surface is the number of handles (!?!?!)

The uniformization theorem: every compact, connected Riemann surface of genus ≥ 2 is a quotient of the
unit disk. (Genus 1 compact surfaces are quotients of C, and genus 0 surfaces are the Riemann sphere P1.)

Riemann’s existence theorem: every compact, connected Riemann surface admits a non-constant
meromorphic function, so is a covering

Riemann-Hurwitz formula for genus of covering-space in terms of ramification over the base space.

Riemann-Roch theorem

Gamma function (Euler’s integral) Γ(s) =
∫∞
0
e−t ts dt

t , Stirling’s asymptotic formula

Riemann’s zeta function z(s) =
∑∞
n=1

1
ns , Euler’s product z(s) =

∏
p prime

1
1−p−s ,

Jensen’s formula counting zeros

Phragmén-Lindelöf theorem

Hadamard’s three-circle theorem

Riemann’s Explicit Formula

Topics from several complex variables...
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