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[02.1] Parametrize counter-clockwise a circle v of radius r > 0 centered at z,, and directly compute
fﬂ/(z — %,)™ dz for all positive and negative integers n.

Such a path can be parametrized as v(t) = z, + re'’ for 0 < ¢ < 27. Then

2m 2m
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[02.2] Using only geometric series expansions, determine the Laurent expansion of f(z) = 1/(z — 1)(z — 2)
in the annulus 1 < |z| < 2, and also in the annulus |z| > 2.

By partial fractions, for 1 < |z| < 2, expanding geometric series,
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For |z| > 2, the 1/(z — 2) requires slightly different treatment:
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[02.3] Determine the Laurent expansion of f(z) = 1/(z —1)* in the annulus |2| > 1, and also in the annulus
|z — 1] > 0.

In |z] > 1,

-1)(—2)(—3 - (—2)(—3 —-2)(-3)(—4 —n)(—n—1)(—n—2
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In the annulus |2z — 1| > 0, the given expression f(z) = (z — 1)~% is already the Laurent expansion.

[02.4] Show that an entire function f satisfying |f(2)] < C'- (1 + |2])'/? for some constant C is constant.

The argument is nearly identical to that of Liouville’s theorem that bounded entire functions are constant.
Namely, Cauchy’s formula for the n* power series coefficient ¢,, of f at 0, via a circle v of radius R for any
R>0,is

1

Cp = 7/ M < length(fyR).sup‘ M
e W" TR

Rn+1

f(w)‘

pyer) < 7R -sup

o2mi B YR

by the trivial estimate on the absolute value of a path integral. For 0 < n € Z this goes to 0 as R — +o0,
so all but the 0" power series coefficient are 0. Since f is entire, it is represented on the whole plane by its
power series, so is constant.

*° dx
[02.5] Compute /_OO T

First, the infinite integral is a limit of finite limits

< dx ) B de
211 = hm 1
oo XEH1 Ro+too J_pat+1
Note that the denominator has zeros at eighth roots of unity, namely, ¢ = (g = e™/4, (3 = &37/4 (5 =
€S/ (T = e™™/4 Let yi be the path from —R to R along the real line, and then along the arc of the

circle of radius R in the upper half-plane, from +R back to —R. The integral over the arc is estimated via
the trivial estimate:

dx 1
‘chR$4+1‘ < length(arcR)-onsigR’TH‘ < 7R-

1
(R—1)*
This goes to 0 as R — 400. Thus, using the Residue Theorem, the original integral is

* d d 1
/ 1 v lim/ 7'24 = lim 27i Res,—¢ ¢s —
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recalling the convenient fact that the residue at z, of ¢g(z)/(z — 2,) for g holomorphic at z, is g(z,). This is

- : 1 _omiel 1y _ow¢ loiow 1dd T
i o T CvawEEg) ~ Tkt S 2 T T2 e Y=
[02.6] Compute /_Zifff with real t.

As in the previous example, the infinite integral is a limit of finite limits

00 itz o R e
/ —— = lm / 7]
oo THAH1 R—+oo J_p z*t+1
The denominator has zeros at eighth roots of unity ¢ = ™/, (3, ¢®, (7. Let v be the path from —R to R

along the real line, and then along the arc of the circle of radius R in the upper half-plane, from +R back
to —R. The integral over the arc is estimated via the trivial estimate:

et do itz et-—Im (z)
< length(arc R) - su ’7’< R —+—
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For ¢t > 0, this goes to 0 as R — +00. Using the Residue Theorem, the original integral is

o0 eitz dx eitz dz eitz
/ - = lim / — = lim2mi Res,—¢ s —
oo T R J.1+z R 142

eite eitc?
+

(C=ENC=E)C=CT) (= = )¢ = C7))

recalling the convenient fact that the residue at z, of g(z)/(z — 2,) for g holomorphic at z, is g(z,). The

denominators simplify somewhat:

- 27ri( (for t > 0)

== -¢) = (V2)(20)(iv2) = 4i¢

and
(== -¢) = «

so the ¢t > 0 case gives

eite gitc? T T -3
9 ( ) _ itl it¢ for t >
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For ¢t < 0, replacing z by —z in the original integral reduces to the previous case. That is,

[e'e] ot
/ e’:idx _ l(eimcﬂeuw)
oo THH1 2¢

* xdx

[02.7] Compute/O T8

As usual, the integral is the limit of finite integrals fOR as R — +oo. Let yg be the path from 0 to R along

the real line, then counter-clockwise along the circle of radius R to R - e>™/3, then back along the straight
line to 0. This path is chosen because the integral from R - e2™/3 to 0 is very simply related to the original:

/0 (627Ti/3t) d(eQﬂ'i/?)t) B _647”'/3 /R tdt
0

R 1+ (627r7,'/3t)3 143

The integral along the arc is easily estimate by the trivial estimate:

z dz z 2TR R
2% 1 < length : ‘ ‘ .
’ /arc R 1 + ZS ‘ = e (arc R) onsz?rIzR 1 + Z3 o 3 (R — 1)3

which goes to 0 as R — +o00. The integral over g can be evaluated by residues: for R > 1, there is a single
singularity inside vz, at the sixth root of unity ¢ = (3 = e™/3. Noting that

Bl = ) -2+1) = + - k-

and that —e?™/3 = ¢, we have
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[02.8] Compute — + wtmta

1 + ...

Arrange to evaluate the infinite sum by residues, by using the function 27i/(e?™* — 1), which we will check
has simple poles with residues 1 at integers, and for z bounded away from integers is bounded. Granting
that for a moment, letting v be a counter-clockwise path around the square with vertices &7 4 ¢T" with
Te % + Z, by residues

211 1 271 1 1 271 1
/YT eQ‘n’iz -1 ’ ; dZ = Z ReSZ:n eQﬂ'iz -1 ’ ? = Z F + ReSZZO e27riz —1 ’ ?
0<|n|<T 0<|n|<T

Because of the division by z*, the latter residue is visibly the coefficient of 2z in the Laurent expansion of
27i/(e*™** — 1), which is determined by expanding 1/(e* — 1)

1 1 1
=1  (I4z24+2+2 +5+..)-1 2+ 42 42+,
1 1 _1(1 (z+z2+ >+(z+z2+ )2 <z+z2+ )3+ )
- - 2 6 “ .. 2 6 “ .. 2 6 “ .. “ ..

* 1+ (3+5+5+..) 7

The 23 coefficient of the latter is

1+(21 1+1 (1)2) 3(1)2 1+<1)47 1+1+1 1+1

5! 2! 4! 3! 2! 3! 2! N 120 24 36 8 16
Replacing z by 27miz in that Laurent expansion, and multiplying from the 27i from the numerator multiplies
this by (27i)* = 1674, giving

16 16 16 16 16 2 2 4 . —6+30+20-45 1
120 24 36 8 16 15 3 9 - 45 45

Thus, still granting that everything works out, we have

2mi 1 1 271 1 1
[YT e?ﬂ’iz ? dz = Z na + RGSZ:0 e27riz -1 ’ ; = F - 45
0<|n|<T 0<|n|<T

Taking the limit, the integral goes to 0, so
1 1 1 1
= 1 — - = —92.N" L _ =
0=lm >, F- 3 2T B
0<|n|<T n>1

giving the claimed result. For the other details:

The function 27i/(e*™** —1) has no singularities unless the denominator is 0, which occurs exactly at integers.
It is Z-periodic, so to check that its residue at 0 is 1: as above,
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211 211 21 1

(14 (2miz)+ Cm22 4 )1 omiz4 Gzt 4 7 2ty

1 1 1 omiz
_ L :f(1f(—+...)+...)
z 1+(2m§+...> z 2

e27r1'z -1

To check that this function is bounded for z away from integers, first observe that [¢*™#| < 1 for Im (z) > 5

and [e2™| > e for Im(2) < — 5-. In both cases, e*™* — 1 is bounded away from zero, so 2mi/(e*™* — 1) is
bounded.

For [Im(z)| < -, again use periodicity, to reduce to the set where [Im(z)| < 55, 0 < Re(z) < 1, and
|z—0| > % and |z — 1| > 1. This set is compact, and |2mi/(e?™* — 1)| is continuous on it, so is bounded.
This completes the checking of the background details to make things work.




