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[02.1] Parametrize counter-clockwise a circle γ of radius r > 0 centered at zo, and directly compute∫
γ
(z − zo)n dz for all positive and negative integers n.

Such a path can be parametrized as γ(t) = zo + reit for 0 ≤ t ≤ 2π. Then∫
γ

(z − zo)n dz =

∫ 2π

0

(reit)n d(reit) =

∫ 2π

0

(reit)n ireit dt

= irn+1

∫ 2π

0

ei(n+1)t dt =


[
it
]2π
0

= 2πi (for n = −1)[ irn+1 · ei(n+1)t

i(n+ 1)

]2π
0

= 0 (for n 6= −1)

[02.2] Using only geometric series expansions, determine the Laurent expansion of f(z) = 1/(z − 1)(z − 2)
in the annulus 1 < |z| < 2, and also in the annulus |z| > 2.

By partial fractions, for 1 < |z| < 2, expanding geometric series,

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
=
− 1

2

1− z
2

− 1

z
· 1

1− 1
z

= − 1
2

(
1+

z

2
+(

z

2

)2
+ . . .

)
− 1

z

(
1+

1

z
+
(1

z

)2
+ . . .

)

= − 1
2 −

∞∑
n=1

(1 +
1

2n+1
) z−n (in the annulus 1 < |z| < 2)

For |z| > 2, the 1/(z − 2) requires slightly different treatment:

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
=

1

z
· 1

1− 2
z

+
1

z
· 1

1− 1
z

=
1

z

(
1+

2

z
+(

2

z

)2
+ . . .

)
− 1

z

(
1+

1

z
+
(1

z

)2
+ . . .

)

=

∞∑
n=1

(2n−1 − 1) z−n =

∞∑
n=2

(2n−1 − 1) z−n (in the annulus 1 < |z| < 2)

[02.3] Determine the Laurent expansion of f(z) = 1/(z−1)4 in the annulus |z| > 1, and also in the annulus
|z − 1| > 0.

In |z| > 1,
1

z − 1
=

1

z
· 1

1− 1
z

=
1

z
·
(

1 +
1

z
+
(1

z

)2
+ . . .

)
=

1

z
+
(1

z

)2
+ . . .

Differentiating termwise three times gives

(−1)(−2)(−3)

(z − 1)4
=

(−1)(−2)(−3)

z4
+

(−2)(−3)(−4)

z5
+ . . .+

(−n)(−n− 1)(−n− 2)

zn+3
+ . . .

which simplifies to
1

(z − 1)4
=

1

z4
+

2 · 3 · 4/6
z5

+ . . .+
n(n+ 1)(n+ 2)/6

zn+3
+ . . .
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In the annulus |z − 1| > 0, the given expression f(z) = (z − 1)−4 is already the Laurent expansion.

[02.4] Show that an entire function f satisfying |f(z)| ≤ C · (1 + |z|)1/2 for some constant C is constant.

The argument is nearly identical to that of Liouville’s theorem that bounded entire functions are constant.
Namely, Cauchy’s formula for the nth power series coefficient cn of f at 0, via a circle γR of radius R for any
R > 0, is

cn =
1

2πi

∫
γR

f(w) dw

wn+1
≤ length(γR) · sup

γR

∣∣∣ f(w)

wn+1

∣∣∣ ≤ πR · sup
γR

C · (1 +R)
1
2

Rn+1

by the trivial estimate on the absolute value of a path integral. For 0 < n ∈ Z this goes to 0 as R → +∞,
so all but the 0th power series coefficient are 0. Since f is entire, it is represented on the whole plane by its
power series, so is constant.

[02.5] Compute

∫ ∞
−∞

dx

x4 + 1
.

First, the infinite integral is a limit of finite limits∫ ∞
−∞

dx

x4 + 1
= lim

R→+∞

∫ R

−R

dx

x4 + 1

Note that the denominator has zeros at eighth roots of unity, namely, ζ = ζ8 = eπi/4, ζ3 = e3πi/4, ζ5 =
e5πi/4, ζ7 = e7πi/4. Let γR be the path from −R to R along the real line, and then along the arc of the
circle of radius R in the upper half-plane, from +R back to −R. The integral over the arc is estimated via
the trivial estimate: ∣∣∣ ∫

arc R

dx

x4 + 1

∣∣∣ ≤ length(arc R) · sup
on arc R

∣∣∣ 1

z4 + 1

∣∣∣ ≤ πR · 1

(R− 1)4

This goes to 0 as R→ +∞. Thus, using the Residue Theorem, the original integral is∫ ∞
−∞

dx

x4 + 1
= lim

R

∫
γR

dz

1 + z4
= lim

R
2πi Resz=ζ, ζ3

1

1 + z4

= 2πi
( 1

(ζ − ζ3)(ζ − ζ5)(ζ − ζ7)
+

1

(ζ3 − ζ)(ζ3 − ζ5)(ζ3 − ζ7)

)
recalling the convenient fact that the residue at zo of g(z)/(z − zo) for g holomorphic at zo is g(zo). This is

2πi
( 1

(
√

2)(2ζ)(i
√

2)
+

1

(−
√

2)(i
√

2)(2iζ)

)
=

πi

2

( 1

iζ
+

1

ζ

)
=

πζ2

2
· 1− i

ζ
=

π

2
· 1 + i√

2
· (1− i) =

π√
2

[02.6] Compute

∫ ∞
−∞

eitx dx

x4 + 1
with real t.

As in the previous example, the infinite integral is a limit of finite limits∫ ∞
−∞

eitx dx

x4 + 1
= lim

R→+∞

∫ R

−R

eitx dx

x4 + 1

The denominator has zeros at eighth roots of unity ζ = eπi/4, ζ3, ζ5, ζ7. Let γR be the path from −R to R
along the real line, and then along the arc of the circle of radius R in the upper half-plane, from +R back
to −R. The integral over the arc is estimated via the trivial estimate:∣∣∣ ∫

arc R

eitx dx

x4 + 1

∣∣∣ ≤ length(arc R) · sup
on arc R

∣∣∣ eitz

z4 + 1

∣∣∣ ≤ πR · e
t·−Im(z)

(R− 1)4
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For t ≥ 0, this goes to 0 as R→ +∞. Using the Residue Theorem, the original integral is∫ ∞
−∞

eitx dx

x4 + 1
= lim

R

∫
γR

eitz dz

1 + z4
= lim

R
2πi Resz=ζ, ζ3

eitz

1 + z4

= 2πi
( eitζ

(ζ − ζ3)(ζ − ζ5)(ζ − ζ7)
+

eitζ
3

(ζ3 − ζ)(ζ3 − ζ5)(ζ3 − ζ7)

)
(for t ≥ 0)

recalling the convenient fact that the residue at zo of g(z)/(z − zo) for g holomorphic at zo is g(zo). The
denominators simplify somewhat:

(ζ − ζ3)(ζ − ζ5)(ζ − ζ7) = (
√

2)(2ζ)(i
√

2) = 4iζ

and
(ζ3 − ζ)(ζ3 − ζ5)(ζ3 − ζ7) = 4ζ

so the t ≥ 0 case gives

2πi
(eitζ

4iζ
+
eitζ

3

4ζ

)
=

π

2ζ
eitζ +

πi

2ζ
eitζ

3

(for t ≥ 0)

For t < 0, replacing x by −x in the original integral reduces to the previous case. That is,∫ ∞
−∞

eitx dx

x4 + 1
=

π

2ζ

(
ei|t|ζ + iei|t|ζ

3
)

[02.7] Compute

∫ ∞
0

x dx

1 + x3

As usual, the integral is the limit of finite integrals
∫ R
0

as R→ +∞. Let γR be the path from 0 to R along

the real line, then counter-clockwise along the circle of radius R to R · e2πi/3, then back along the straight
line to 0. This path is chosen because the integral from R · e2πi/3 to 0 is very simply related to the original:∫ 0

R

(e2πi/3t) d(e2πi/3t)

1 + (e2πi/3t)3
= −e4πi/3

∫ R

0

t dt

1 + t3

The integral along the arc is easily estimate by the trivial estimate:∣∣∣ ∫
arc R

z dz

1 + z3

∣∣∣ ≤ length(arc R) · sup
on arc R

∣∣∣ z

1 + z3

∣∣∣ ≤ 2πR

3
· R

(R− 1)3

which goes to 0 as R→ +∞. The integral over γR can be evaluated by residues: for R > 1, there is a single
singularity inside γR, at the sixth root of unity ζ = ζ6 = eπi/3. Noting that

z3 + 1 = (z + 1)(z2 − z + 1) = (z + 1)(z − ζ)(z − ζ−1)

and that −e4πi/3 = ζ, we have

(1 + ζ)

∫ ∞
0

x dx

1 + x3
= lim

R

∫
γR

z dz

1 + z3
= 2πi Resz=ζ

z

1 + z3
= 2πi

ζ

(ζ + 1)(ζ − ζ−1)

so

3
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∫ ∞
0

x dx

1 + x3
= 2πi

ζ

(ζ + 1)2 (ζ − ζ−1)
= 2πi

1

(ζ + 1)(ζ−1 + 1) (i
√

3)
=

2π

( 1+i
√
3

2 + 1)( 1−i
√
3

2 + 1)
√

3

=
2π

( 9
4 + 3

4 )
√

3
=

2π

3
√

3

[02.8] Compute
1

1
+

1

24
+

1

34
+

1

44
+ . . .

Arrange to evaluate the infinite sum by residues, by using the function 2πi/(e2πiz − 1), which we will check
has simple poles with residues 1 at integers, and for z bounded away from integers is bounded. Granting
that for a moment, letting γT be a counter-clockwise path around the square with vertices ±T ± iT with
T ∈ 1

2 + Z, by residues∫
γT

2πi

e2πiz − 1
· 1

z4
dz =

∑
0≤|n|<T

Resz=n
2πi

e2πiz − 1
· 1

z4
=

∑
0<|n|<T

1

n4
+ Resz=0

2πi

e2πiz − 1
· 1

z4

Because of the division by z4, the latter residue is visibly the coefficient of z3 in the Laurent expansion of
2πi/(e2πiz − 1), which is determined by expanding 1/(ez − 1)

1

ez − 1
=

1

(1 + z + z2

2 + z3

6 + z4

24 + . . .)− 1
=

1

z + z2

2 + z3

6 + z4

24 + . . .

=
1

z
· 1

1 +
(
z
2 + z2

6 + z3

24 + . . .
) =

1

z

(
1−

(z
2

+
z2

6
+ . . .

)
+
(z

2
+
z2

6
+ . . .

)2
−
(z

2
+
z2

6
+ . . .

)3
+ . . .

)
The z3 coefficient of the latter is

− 1

5!
+
(

2 · 1

2!
· 1

4!
+ 1 ·

( 1

3!

)2)
− 3 ·

( 1

2!

)2
· 1

3!
+
( 1

2!

)4
= − 1

120
+

1

24
+

1

36
− 1

8
+

1

16

Replacing z by 2πiz in that Laurent expansion, and multiplying from the 2πi from the numerator multiplies
this by (2πi)4 = 16π4, giving

− 16

120
+

16

24
+

16

36
− 16

8
+

16

16
= − 2

15
+

2

3
+

4

9
− 1 =

−6 + 30 + 20− 45

45
= − 1

45

Thus, still granting that everything works out, we have∫
γT

2πi

e2πiz
1

z4
dz =

∑
0<|n|<T

1

n4
+ Resz=0

2πi

e2πiz − 1
· 1

z4
=

∑
0<|n|<T

1

n4
− 1

45

Taking the limit, the integral goes to 0, so

0 = lim
T

∑
0<|n|<T

1

n4
− 1

45
= 2 ·

∑
n≥1

1

n4
− 1

45

giving the claimed result. For the other details:

The function 2πi/(e2πiz−1) has no singularities unless the denominator is 0, which occurs exactly at integers.
It is Z-periodic, so to check that its residue at 0 is 1: as above,
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2πi

e2πiz − 1
=

2πi

(1 + (2πiz) + (2πiz)2

2 + . . .)− 1
=

2πi

2πiz + (2πiz)2

2 + . . .
=

1

z + 2πiz2

2 + . . .

=
1

z
· 1

1 +
(

2πi z2 + . . .
) =

1

z

(
1−

(2πiz

2
+ . . .

)
+ . . .

)

To check that this function is bounded for z away from integers, first observe that |e2πiz| ≤ 1
e for Im(z) ≥ 1

2π ,
and |e2πiz| ≥ e for Im(z) ≤ − 1

2π . In both cases, e2πiz − 1 is bounded away from zero, so 2πi/(e2πiz − 1) is
bounded.

For |Im(z)| ≤ 1
2π , again use periodicity, to reduce to the set where |Im(z)| ≤ 1

2π , 0 ≤ Re(z) ≤ 1, and
|z − 0| ≥ 1

2 and |z − 1| ≥ 1. This set is compact, and |2πi/(e2πiz − 1)| is continuous on it, so is bounded.
This completes the checking of the background details to make things work.
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