
(October 23, 2014)

Complex analysis examples 04

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

[This document is http://www.math.umn.edu/˜garrett/m/complex/examples 2014-15/cx discussion 04.pdf]

[04.1] Compute

∫ ∞
0

xs dx

1 + x2

The integral is absolutely convergent for −1 < Re(s) < 1. Implicitly,

xs = es log x

where the logarithm is the one which is real-valued on (0,+∞). Use the Hankel/keyhole contour. First, the
integral itself is a limit ∫ ∞

0

xs dx

1 + x2
= lim

ε→0+, R→+∞

∫ R

ε

xs dx

1 + x2

Let Hε,R be the Hankel/keyhole contour that comes from R along the real line to ε, then traces a circle of
radius ε around 0 counter-clockwise to ε, then back out to R. Let Hε be the limiting case as R → +∞.
We want the integral along that last part of the path, the outbound part from ε back out to R, to be the

original integral
∫ R
ε
xs/(x2 + 1) dx. That is, we want the value of xs to match.

On that small circle, the argument of x changes continuously, with a net increase of 2π from its value on
the in-bound part of the path. Requiring that xs change continuously on that small circle, and be es log x

with real-valued log x after traversing 2π radians counter-clockwise, requires that xs be es(log x−2πi) on the
in-bound path. Thus, ∫

outbound+inbound

x2 dx

1 + x2
= (1− e−2πis)

∫ R

ε

x2 dx

1 + x2

Further, the main point of the keyhole trick is that, surprisingly, the limit over ε → 0+ is reached in finite
time, in the sense that there is sufficiently small εo > 0 such that

lim
ε→0+

∫
Hε,R

xs dx

1 + x2
=

∫
Hε1,R

xs dx

1 + x2
(for all positive ε1 < εo)

Recall the proof: for 0 < ε1 < εo, let γεo,ε1 be the closed path that traces counter-clockwise around the
circle of radius εo from εo back to εo, then left to ε1, then clockwise around a circle of radius ε1 back to ε1,
then right to εo. In the interior of this path, the integrand is holomorphic. Adding the integral over γεo,ε1
to the integral over Hε1,R makes the integrals from εo to ε1 (inbound) and from ε1 to εo (outbound) cancel,
and the integrals around the circles of radius ε1 cancel, leaving Hεo,R. (Yes, one should draw a picture.)

To evaluate ∫
Hε1,R

xs dx

1 + x2

add an integral counter-clockwise around a circle σR of radius R from R ∈ R back to R. For Re(s) < 1, the
trivial estimate on this integral is

∣∣∣ ∫
σR

xs dx

1 + x2

∣∣∣ ≤ length · sup
σR

∣∣∣ xs dx
1 + x2

∣∣∣ ≤ 2πR · R
Re(s)

(R− 1)2
−→ 0 (as R→ +∞, for Re(s) < 1)

Thus,

lim
R

∫
Hε1,R+σR

xs dx

1 + x2
=

∫
Hε1+σR

xs dx

1 + x2
= (1− e−2πis)

∫ ∞
0

xs dx

1 + x2
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On the other hand, the integral over the closed contour Hε1,R + σR can be evaluated by residues: it is −2πi
times the sum of residues in its interior, since the boundary is traced clockwise. Inside that path, for small
ε1 and large R, there are exactly two poles, at x = ±i, and both are simple. The value of arg x at −i is
obtained by moving clockwise from the arg x = 0 on (0,+∞), giving − π

2 . The argument at +i is obtained
by continuing clockwise, giving − 3π

2 . Thus,

sum of residues =
e−

πi
2 s

(−i)− i
+

e−
3πi
2 s

i− (−i)
=

e−
πi
2 s

−2i
+
e−

3πi
2 s

2i

In summary, ∫ ∞
0

xs dx

1 + x2
=

1

1− e−2πis
lim
R

∫
Hε1+σR

xs dx

1 + x2
=

−2πi

1− e−2πis
(e−πi2 s
−2i

+
e−

3πi
2 s

2i

)

=
π

1− e−2πis
(
e−

πi
2 s − e− 3πi

2 s
)

= π
e
πi
2 s − e−πi2 s

eπis − e−πis
=

π

2

2

e
πi
2 s + e−

πi
2 s

=
π

2 cos πs2

[04.2] Compute

∫ 1

0

(
x(1− x)

)s
1 + x3

dx

Oops, as it stands, I don’t think that we can do much with it. Possibly what I intended, or in any case is
better, was something like ∫ 1

0

xs (1− x)−s

1 + x3
dx (with Re(s) > −1)

This does admit a variation of the Hankel/keyhole contour idea, namely, tracking s arg x counter-clockwise
around 0 adds 2πs, while tracking −s arg(1− x) counter-clockwise around 1 subtracts 2πs. That is, moving
around both 0, 1 (with the modified set-up) returns xs(1− x)−s to its original value. That is, on C− [0, 1],
the complex plane with the unit interval removed, there is a well-defined holomorphic (and genuinely single-
valued!) xs(1− x)−s.

The original integral from 0 to 1 is not cancelled by the integral from 1 back to 0 after going around 1
counter-clockwise, because xs(1 − x)−s has become e−2πix · xs(1 − x)−s. Thus, for ε > 0, letting γε be the
path from ε to 1− ε, then clockwise around 1 back to 1− ε, then left to ε, and around 0 counter-clockwise
back to ε,

lim
ε

∫
γε

xs(1− x)−s

1 + x3
dx = (1− e−2πis)

∫ 1

0

xs(1− x)−s

1 + x3
dx

Let σR be a circle of radius R, traversed clockwise. Connect σR and γε by suitably oriented inbound and
outbound paths to create a large path τ . As usual, the inbound and outbound integrals are mutually
cancelling. In the interior of τ the integrand is meromorphic, with simple poles at −1 and primitive sixth
roots of 1, ζ = eπi/3, and ζ−1 = e−πi/3. Thus, noting that the large path is negatively oriented, so that
−2πi times the residues is picked up,∫

γε+σR

xs(1− x)−s

1 + x3
dx = −2πiResz=−1, ζ, ζ−1

xs(1− x)−s

1 + x3

= −2πi
( (−1)s(1− (−1))−s

(−1− ζ)(−1− ζ−1)
+

ζs(1− ζ)−s

(1− ζ)(ζ − ζ−1)
+

(ζ−1)s(1− ζ−1)−s

(1− ζ−1)(ζ−1 − ζ)

)
Then there is the task of identifying the correct sth powers. Putting that off, the integral over σR can be
easily estimated for Re(s) < 0 by∣∣∣ ∫

σR

xs(1− x)−s

1 + x3
dx
∣∣∣ ≤ length · sup on path ≤ 2πR · (R+ 1)2Re(s)

(R− 1)3
−→ 0 (as R→∞)

2



Paul Garrett: Complex analysis examples 04 (October 23, 2014)

Thus, with suitable values of sth powers,

∫ 1

0

xs(1− x)−s

1 + x3
dx =

−2πi

1− e−2πis
·
( ( −1

1−(−1)
)s

(−1− ζ)(−1− ζ−1)
+

(
ζ

1−ζ
)s

(ζ − (−1))(ζ − ζ−1)
+

(
ζ−1

1−ζ−1

)s
(ζ−1 − (−1))(ζ−1 − ζ)

)
Last, tracking args. Since (x/(1 − x))s is well-defined on C − [0, 1], it shouldn’t make any difference how
we do this, as long as we consider x/(1 − x) as a single entity. Going from [0, 1] clockwise around 0 to −1
decreases the argument of x

1−x from 0 to −π. Thus,

( −1

1− (−1)

)s
=
(
− 1

2

)s
= es(− log 2−πi) = 2−seπis

From [0, 1] clockwise to ζ decreases the argument of x
1−x from 0 to

arg
( ζ

1− ζ

)
= arg

( ζ

ζ−1

)
= arg ζ2 = −4

3
π

Thus, ( ζ

1− ζ

)s
= (ζ2)s = es(−

4
3π)

From [0, 1] clockwise to ζ−1 decreases the argument of x
1−x from 0 to

arg
( ζ−1

1− ζ−1
)

= arg
(ζ−1
ζ

)
= arg ζ−2 = −2

3
π

Thus, ( ζ−1

1− ζ−1
)s

= (ζ−2)s = es(−
2
3π)

Thus, ∫ 1

0

xs(1− x)−s

1 + x3
dx =

−2πi

1− e−2πis
( 2−seπis

(1 + ζ)(1 + ζ−1)
+

e−
4
3πis

(ζ + 1)(i
√

3)
+

e−
2
3πis

(ζ−1 + 1)(−i
√

3)

)
Perhaps further simplification is of less interest... although one might hope to certify that for s ∈ R this
apparent outcome is real. ///

[04.3] Compute

∫ ∞
0

e−iξx xs e−x dx with Re(s) > −1.

This invites application of the Gamma identity∫ ∞
0

e−xy xs
dx

x
= y−s

∫ ∞
0

e−x xs
dx

x
= y−s Γ(s)

which holds first for y > 0 and then for Re(y) > 0, by the Identity Principle (also known as The Permanence
of Analytic Relationships): ∫ ∞

0

e−iξx xs e−x dx =

∫ ∞
0

e−x(1+iξx) xs+1 e−x
dx

x

= (1 + iξ)−(s+1)

∫ ∞
0

e−x xs+1 e−x
dx

x
= (1 + iξ)−(s+1) · Γ(s+ 1)

3
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[04.4] Compute

∫ ∞
−∞

e−iξx xe−x
2

dx

This is the Fourier transform of x → xe−x
2

. We can reduce it to a slightly simpler computation by an
integration by parts:∫ ∞
−∞

e−iξx xe−x
2

dx = − 1
2

∫ ∞
−∞

e−iξx
d

dx
e−x

2

dx = 1
2

∫ ∞
−∞

d

dx
e−iξx · e−x

2

dx = − 1
2 iξ

∫ ∞
−∞

e−iξx e−x
2

dx

The exponentials can be combined, and then complete the square:∫ ∞
−∞

e−iξx e−x
2

dx =

∫ ∞
−∞

e−(x
2+iξx) dx =

∫ ∞
−∞

e−(x
2+iξx− ξ

2

4 )− ξ
2

4 dx = e−
ξ2

4

∫ ∞
−∞

e−(x+
iξ
2 )2 dx

The intuition at this point is that sliding the integral from −∞ to +∞ along the real axis to be an integral
from −iξ −∞ to −iξ +∞ will not change the value of the integral, since there are no residues to pick up,
while it will convert the integrand back to e−x

2

, which does not involve ξ.

As usual, an integral from −∞ to +∞ is a limit of the corresponding integral from −R to +R, as R→ +∞.
Then ∫ ∞

−∞
e−(x+

iξ
2 )2 dx = lim

R

∫ R

−R
e−(x+

iξ
2 )2 dx =

∫ −iξ+R
−iξ−R

e−x
2

dx

Let BR be the rectangle with vertices ±R and −iξ ± R, traced counter-clockwise. The integrals over the
ends of the box are easily estimated: since |e−(x+iy)2 | = e−Re(x+iy)2 = e−x

2+y2 ,

∣∣∣ ∫ −iξ+R
R

e−x
2

dx
∣∣∣ ≤ length · (sup on curve) ≤ |ξ| · e−R

2

· eξ
2

−→ 0 (as R→ +∞)

Thus,

0 = lim
R→∞

0 = lim
R

∫
BR

e−iξx e−x
2

dx = lim
R

(
e−

ξ2

4

∫ −iξ+R
−iξ−R

e−x
2

dx− e−
ξ2

4

∫ R

−R
e−x

2

dx
)

so ∫ ∞
−∞

e−x
2

dx = e−
ξ2

4 ·
∫ ∞
−∞

e−x
2

dx = e−
ξ2

4 ·
√
π

and ∫ ∞
−∞

e−iξx xe−x
2

dx = − 1
2 iξ

∫ ∞
−∞

e−iξx e−x
2

dx = − 1
2 iξ · e

− ξ
2

4 ·
√
π

[04.5] For continuous ϕ on the unit circle |z| = 1, define

fϕ(z) =

∫ 2π

0

ϕ(eiθ)

eiθ − z
dθ (for |z| < 1)

Show that f(z) is holomorphic. Give an example of ϕ not identically 0 so that fϕ is identically 0.

Use Morera’s theorem: with γ be a small counter-clockwise triangle around a given zo in the open unit disk,∫
γ

fϕ(z) dz =

∫
γ

∫ 2π

0

ϕ(eiθ)

eiθ − z
dθ dz =

∫ 2π

0

ϕ(eiθ)
(∫

γ

dz

eiθ − z

)
dθ =

∫ 2π

0

0 dθ = 0

Morera’s theorem says that this vanishing implies holomorphy of fϕ. ///
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Note that the given integral is not quite a written-out version of Cauchy’s kernel, because d(eiθ) = iθ eiθ dθ,
so a factor of eiθ is missing. Nevertheless, it’s close. Thus, various heuristics might suggest making ϕ(eiθ)
be the boundary value of an anti-holomorphic function such as F (z) = z. Thus, ϕ(eiθ) = F (eiθ) = e−iθ. For
|z| < 1, expanding a geometric series:

fϕ(z) =

∫ 2π

0

ϕ(eiθ)

eiθ − z
dθ =

∫ 2π

0

e−iθ

eiθ − z
dθ =

∫ 2π

0

e−iθ
e−iθ

1− ze−iθ
dθ =

∞∑
n=0

∫ 2π

0

e−2iθ
(
ze−iθ

)n
dθ

=

∞∑
n=0

zn
∫ 2π

0

e−i(2+n)θ dθ =

∞∑
n=0

zn · 0 = 0

Thus, with hindsight, ϕ(eiθ) = 1 would also have given fϕ = 0. ///

[04.6] Let f be an entire function such that f(z + 1) = f(z) and f(z + i) = f(z) for all z. Show that f is
constant.

First, the given periodicity relations imply that all the values of f are determined by its values on
R = {z = x+ iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}: given x, y, there are unique integers m,n such that m ≤ x < m+ 1
and n ≤ y < n+ 1. By the obvious induction,

f(x+ iy) = f((x−m) + i(y − n))

while 0 ≤ x −m < 1 and 0 ≤ y − n < 1. On the compact set 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the continuous
function f is bounded. Thus, f is entire and bounded, so by Liouville, it is constant. ///

[04.7] Show that a real-valued holomorphic function is constant.

For f real-valued on a neighborhood of zo, taking a derivative along a real direction, but also along a purely
imaginary direction, gives

f ′(zo) = lim
ε→0

f(zo + ε)− f(zo)

ε
= lim

ε→0

f(zo + iε)− f(zo)

iε
(with ε real)

The first limit is real, the second imaginary, so the equality implies that they are both 0. Thus, f ′ = 0, and
f is constant. ///

Another kind of argument, applicable to entire functions with constrained values: for f were entire and
real-valued, the function F (z) = eif(z) takes values on the unit circle. In particular, F is bounded and entire,
so constant, by Liouville. Then 0 = F ′(z) = if ′(z)eif(z), so f ′(z) = 0, and f is constant. ///

[04.8] The Bergmann kernel of the unit disk is

K(z, w) =
1

π

1

(1− w z)2

For f holomorphic on the open unit disk and extending continuously to a continuous function on the closed
unit disk, show that

f(w) =

∫ ∫
x2+y2≤1

f(x+ iy) K(z, w) dx dy

In fact, it is better to derive the kernel from first principles. That is, holomorphic functions on the unit disk
that extend to be continuous on the closed disk are bounded, so we can put the hermitian inner product

〈f, g〉 =

∫ ∫
x2+y2≤1

f(x+ iy) g(x+ iy) dx dy
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on the C-vectorspace of such functions. It is natural to wonder about 〈zm, zn〉:

〈zm, zn〉 =

∫ ∫
x2+y2≤1

zm zn dx dy =

∫ 1

0

∫ 2π

0

rm+n eπi(n−m)θ dθ r dr

= δmn 2π

∫ 1

0

r2n r dr = δmn
π

n+ 1

with δmn = 1 if m = n and 0 otherwise. Thus, un(z) = zn ·
√

n+1
π is an orthonormal basis, and the

reproducing kernel, or Bergmann kernel, is

K(z, w) =
∑
n

un(z) · un(w) =
1

π

∞∑
n=0

(n+ 1) zn wn =
1

π

∞∑
n=0

1

w

d

dz
(zw)n+1

=
1

π

1

w

d

dz

zw

1− zw
=

1

π

1

(1− zw)2

Just to check, use the power series expansion f(z) =
∑
n≥0 cn z

n, expand the kernel as a geometric series

1

π

1

(1− w z)2
=

1

π

1

w

d

dz

1

1− w z
=

1

π

1

w

d

dz

(
1 + w z + (w z)2 + . . .

)
=

1

π

(
1 + 2w z + 3(w z)2 + . . .

)
Then the integral is

1

π

∑
m≥0, n≥0

cn

∫ ∫
x2+y2≤1

zn (m+ 1)wm zm dx dy

In polar coordinates z = reiθ, this becomes

1

π

∑
m≥0, n≥0

cn

∫ 1

0

∫ 2π

0

rm+n (m+ 1)wm ei(n−m)θ dθ r dr =
1

π

∑
n≥0

cn 2π(n+ 1)wn
∫ 1

0

r2n r dr

=
∑
n≥0

cn 2(n+ 1)wn
1

2n+ 2
=
∑
n≥0

cn w
n = f(w)
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