(October 23, 2014)

Complex analysis examples 04

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/complex/examples_2014-15/cx_discussion_04.pdf]

[04.1] Compute
$$\int_0^\infty \frac{x^s dx}{1+x^2}$$

The integral is absolutely convergent for $-1 < \operatorname{Re}(s) < 1$. Implicitly,

$$x^s = e^{s \log x}$$

where the logarithm is the one which is real-valued on $(0, +\infty)$. Use the Hankel/keyhole contour. First, the integral itself is a limit

$$\int_0^\infty \frac{x^s \, dx}{1+x^2} = \lim_{\varepsilon \to 0^+, \ R \to +\infty} \int_\varepsilon^R \frac{x^s \, dx}{1+x^2}$$

Let $H_{\varepsilon,R}$ be the Hankel/keyhole contour that comes from R along the real line to ε , then traces a circle of radius ε around 0 counter-clockwise to ε , then back out to R. Let H_{ε} be the limiting case as $R \to +\infty$. We want the integral along that last part of the path, the outbound part from ε back out to R, to be the original integral $\int_{\varepsilon}^{R} x^{s}/(x^{2}+1) dx$. That is, we want the value of x^{s} to match.

On that small circle, the *argument* of x changes continuously, with a net increase of 2π from its value on the in-bound part of the path. Requiring that x^s change *continuously* on that small circle, and be $e^{s \log x}$ with real-valued log x after traversing 2π radians counter-clockwise, requires that x^s be $e^{s(\log x - 2\pi i)}$ on the in-bound path. Thus,

$$\int_{\text{outbound+inbound}} \frac{x^2 \, dx}{1+x^2} = (1-e^{-2\pi is}) \int_{\varepsilon}^{R} \frac{x^2 \, dx}{1+x^2}$$

Further, the main point of the keyhole trick is that, surprisingly, the limit over $\varepsilon \to 0^+$ is reached in finite time, in the sense that there is sufficiently small $\varepsilon_o > 0$ such that

$$\lim_{\varepsilon \to 0^+} \int_{H_{\varepsilon,R}} \frac{x^s \, dx}{1+x^2} = \int_{H_{\varepsilon_1,R}} \frac{x^s \, dx}{1+x^2} \qquad \text{(for all positive } \varepsilon_1 < \varepsilon_o)$$

Recall the proof: for $0 < \varepsilon_1 < \varepsilon_o$, let $\gamma_{\varepsilon_o,\varepsilon_1}$ be the closed path that traces counter-clockwise around the circle of radius ε_o from ε_o back to ε_o , then left to ε_1 , then clockwise around a circle of radius ε_1 back to ε_1 , then right to ε_o . In the interior of this path, the integrand is *holomorphic*. Adding the integral over $\gamma_{\varepsilon_o,\varepsilon_1}$ to the integral over $H_{\varepsilon_1,R}$ makes the integrals from ε_o to ε_1 (inbound) and from ε_1 to ε_o (outbound) cancel, and the integrals around the circles of radius ε_1 cancel, leaving $H_{\varepsilon_0,R}$. (Yes, one should draw a picture.)

To evaluate

$$\int_{H_{\varepsilon_1,R}} \frac{x^s \, dx}{1+x^2}$$

add an integral counter-clockwise around a circle σ_R of radius R from $R \in \mathbb{R}$ back to R. For Re(s) < 1, the trivial estimate on this integral is

$$\left| \int_{\sigma_R} \frac{x^s \, dx}{1+x^2} \right| \le \operatorname{length} \cdot \sup_{\sigma_R} \left| \frac{x^s \, dx}{1+x^2} \right| \le 2\pi R \cdot \frac{R^{\operatorname{Re}(s)}}{(R-1)^2} \longrightarrow 0 \quad (\text{as } R \to +\infty, \text{ for } \operatorname{Re}(s) < 1)$$

Thus,

$$\lim_{R} \int_{H_{\varepsilon_{1},R}+\sigma_{R}} \frac{x^{s} dx}{1+x^{2}} = \int_{H_{\varepsilon_{1}}+\sigma_{R}} \frac{x^{s} dx}{1+x^{2}} = (1-e^{-2\pi i s}) \int_{0}^{\infty} \frac{x^{s} dx}{1+x^{2}}$$

On the other hand, the integral over the closed contour $H_{\varepsilon_1,R} + \sigma_R$ can be evaluated by residues: it is $-2\pi i$ times the sum of residues in its interior, since the boundary is traced *clockwise*. Inside that path, for small ε_1 and large R, there are exactly two poles, at $x = \pm i$, and both are simple. The value of $\arg x$ at -i is obtained by moving *clockwise* from the $\arg x = 0$ on $(0, +\infty)$, giving $-\frac{\pi}{2}$. The argument at +i is obtained by continuing *clockwise*, giving $-\frac{3\pi}{2}$. Thus,

sum of residues =
$$\frac{e^{-\frac{\pi i}{2}s}}{(-i)-i} + \frac{e^{-\frac{3\pi i}{2}s}}{i-(-i)} = \frac{e^{-\frac{\pi i}{2}s}}{-2i} + \frac{e^{-\frac{3\pi i}{2}s}}{2i}$$

In summary,

$$\int_0^\infty \frac{x^s \, dx}{1+x^2} = \frac{1}{1-e^{-2\pi i s}} \lim_R \int_{H_{\varepsilon_1}+\sigma_R} \frac{x^s \, dx}{1+x^2} = \frac{-2\pi i}{1-e^{-2\pi i s}} \Big(\frac{e^{-\frac{\pi i}{2}s}}{-2i} + \frac{e^{-\frac{3\pi i}{2}s}}{2i} \Big)$$
$$= \frac{\pi}{1-e^{-2\pi i s}} \Big(e^{-\frac{\pi i}{2}s} - e^{-\frac{3\pi i}{2}s} \Big) = \pi \frac{e^{\frac{\pi i}{2}s} - e^{-\frac{\pi i}{2}s}}{e^{\pi i s} - e^{-\pi i s}} = \frac{\pi}{2} \frac{2}{e^{\frac{\pi i}{2}s} + e^{-\frac{\pi i}{2}s}} = \frac{\pi}{2\cos\frac{\pi s}{2}}$$

[04.2] Compute $\int_0^1 \frac{(x(1-x))^s}{1+x^3} dx$

Oops, as it stands, I don't think that we can do much with it. Possibly what I intended, or in any case is better, was something like

$$\int_0^1 \frac{x^s (1-x)^{-s}}{1+x^3} \, dx \qquad \text{(with } \operatorname{Re}(s) > -1\text{)}$$

This does admit a variation of the Hankel/keyhole contour idea, namely, tracking $s \arg x$ counter-clockwise around 0 adds $2\pi s$, while tracking $-s \arg(1-x)$ counter-clockwise around 1 subtracts $2\pi s$. That is, moving around both 0, 1 (with the modified set-up) returns $x^s(1-x)^{-s}$ to its original value. That is, on $\mathbb{C} - [0, 1]$, the complex plane with the unit interval removed, there is a well-defined holomorphic (and genuinely singlevalued!) $x^s(1-x)^{-s}$.

The original integral from 0 to 1 is not cancelled by the integral from 1 back to 0 after going around 1 counter-clockwise, because $x^s(1-x)^{-s}$ has become $e^{-2\pi i x} \cdot x^s(1-x)^{-s}$. Thus, for $\varepsilon > 0$, letting γ_{ε} be the path from ε to $1 - \varepsilon$, then clockwise around 1 back to $1 - \varepsilon$, then left to ε , and around 0 counter-clockwise back to ε ,

$$\lim_{\varepsilon} \int_{\gamma_{\varepsilon}} \frac{x^{s} (1-x)^{-s}}{1+x^{3}} \, dx = (1-e^{-2\pi i s}) \int_{0}^{1} \frac{x^{s} (1-x)^{-s}}{1+x^{3}} \, dx$$

Let σ_R be a circle of radius R, traversed clockwise. Connect σ_R and γ_{ε} by suitably oriented inbound and outbound paths to create a large path τ . As usual, the inbound and outbound integrals are mutually cancelling. In the interior of τ the integrand is meromorphic, with simple poles at -1 and primitive sixth roots of 1, $\zeta = e^{\pi i/3}$, and $\zeta^{-1} = e^{-\pi i/3}$. Thus, noting that the large path is negatively oriented, so that $-2\pi i$ times the residues is picked up,

$$\int_{\gamma_{\varepsilon}+\sigma_{R}} \frac{x^{s}(1-x)^{-s}}{1+x^{3}} dx = -2\pi i \operatorname{Res}_{z=-1,\,\zeta,\,\zeta^{-1}} \frac{x^{s}(1-x)^{-s}}{1+x^{3}}$$
$$= -2\pi i \Big(\frac{(-1)^{s}(1-(-1))^{-s}}{(-1-\zeta)(-1-\zeta^{-1})} + \frac{\zeta^{s}(1-\zeta)^{-s}}{(1-\zeta)(\zeta-\zeta^{-1})} + \frac{(\zeta^{-1})^{s}(1-\zeta^{-1})^{-s}}{(1-\zeta^{-1})(\zeta^{-1}-\zeta)} \Big)$$

Then there is the task of identifying the correct s^{th} powers. Putting that off, the integral over σ_R can be easily estimated for $\operatorname{Re}(s) < 0$ by

$$\left| \int_{\sigma_R} \frac{x^s (1-x)^{-s}}{1+x^3} dx \right| \le \text{ length} \cdot \text{sup on path } \le 2\pi R \cdot \frac{(R+1)^{2\text{Re}(s)}}{(R-1)^3} \longrightarrow 0 \quad (\text{as } R \to \infty)$$

Thus, with suitable values of s^{th} powers,

$$\int_{0}^{1} \frac{x^{s}(1-x)^{-s}}{1+x^{3}} dx = \frac{-2\pi i}{1-e^{-2\pi i s}} \cdot \left(\frac{\left(\frac{-1}{1-(-1)}\right)^{s}}{(-1-\zeta)(-1-\zeta^{-1})} + \frac{\left(\frac{\zeta}{1-\zeta}\right)^{s}}{(\zeta-(-1))(\zeta-\zeta^{-1})} + \frac{\left(\frac{\zeta^{-1}}{1-\zeta^{-1}}\right)^{s}}{(\zeta^{-1}-(-1))(\zeta^{-1}-\zeta)}\right) dx$$

Last, tracking args. Since $(x/(1-x))^s$ is well-defined on $\mathbb{C} - [0,1]$, it shouldn't make any difference how we do this, as long as we consider x/(1-x) as a single entity. Going from [0,1] clockwise around 0 to -1decreases the argument of $\frac{x}{1-x}$ from 0 to $-\pi$. Thus,

$$\left(\frac{-1}{1-(-1)}\right)^{s} = \left(-\frac{1}{2}\right)^{s} = e^{s(-\log 2 - \pi i)} = 2^{-s}e^{\pi i s}$$

From [0,1] clockwise to ζ decreases the argument of $\frac{x}{1-x}$ from 0 to

$$\arg\left(\frac{\zeta}{1-\zeta}\right) = \arg\left(\frac{\zeta}{\zeta^{-1}}\right) = \arg\zeta^2 = -\frac{4}{3}\pi$$

Thus,

$$\left(\frac{\zeta}{1-\zeta}\right)^s = (\zeta^2)^s = e^{s(-\frac{4}{3}\pi)}$$

From [0,1] clockwise to ζ^{-1} decreases the argument of $\frac{x}{1-x}$ from 0 to

$$\operatorname{arg}\left(\frac{\zeta^{-1}}{1-\zeta^{-1}}\right) = \operatorname{arg}\left(\frac{\zeta^{-1}}{\zeta}\right) = \operatorname{arg}\zeta^{-2} = -\frac{2}{3}\pi$$

Thus,

$$\left(\frac{\zeta^{-1}}{1-\zeta^{-1}}\right)^s = (\zeta^{-2})^s = e^{s(-\frac{2}{3}\pi)}$$

Thus,

$$\int_0^1 \frac{x^s (1-x)^{-s}}{1+x^3} \, dx = \frac{-2\pi i}{1-e^{-2\pi i s}} \Big(\frac{2^{-s} e^{\pi i s}}{(1+\zeta)(1+\zeta^{-1})} + \frac{e^{-\frac{4}{3}\pi i s}}{(\zeta+1)(i\sqrt{3})} + \frac{e^{-\frac{2}{3}\pi i s}}{(\zeta^{-1}+1)(-i\sqrt{3})} \Big)$$

Perhaps further simplification is of less interest... although one might hope to certify that for $s \in \mathbb{R}$ this apparent outcome is real. ///

[04.3] Compute
$$\int_0^\infty e^{-i\xi x} x^s e^{-x} dx$$
 with $\operatorname{Re}(s) > -1$.

This invites application of the Gamma identity

$$\int_0^\infty e^{-xy} \, x^s \, \frac{dx}{x} \; = \; y^{-s} \int_0^\infty e^{-x} \, x^s \, \frac{dx}{x} \; = \; y^{-s} \, \Gamma(s)$$

which holds first for y > 0 and then for $\operatorname{Re}(y) > 0$, by the Identity Principle (also known as *The Permanence of Analytic Relationships*):

$$\int_0^\infty e^{-i\xi x} x^s e^{-x} dx = \int_0^\infty e^{-x(1+i\xi x)} x^{s+1} e^{-x} \frac{dx}{x}$$
$$= (1+i\xi)^{-(s+1)} \int_0^\infty e^{-x} x^{s+1} e^{-x} \frac{dx}{x} = (1+i\xi)^{-(s+1)} \cdot \Gamma(s+1)$$

[04.4] Compute
$$\int_{-\infty}^{\infty} e^{-i\xi x} x e^{-x^2} dx$$

This is the Fourier transform of $x \to x e^{-x^2}$. We can reduce it to a slightly simpler computation by an integration by parts:

$$\int_{-\infty}^{\infty} e^{-i\xi x} x e^{-x^2} dx = -\frac{1}{2} \int_{-\infty}^{\infty} e^{-i\xi x} \frac{d}{dx} e^{-x^2} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{d}{dx} e^{-i\xi x} \cdot e^{-x^2} dx = -\frac{1}{2} i\xi \int_{-\infty}^{\infty} e^{-i\xi x} e^{-x^2} dx$$

The exponentials can be combined, and then complete the square:

$$\int_{-\infty}^{\infty} e^{-i\xi x} e^{-x^2} dx = \int_{-\infty}^{\infty} e^{-(x^2 + i\xi x)} dx = \int_{-\infty}^{\infty} e^{-(x^2 + i\xi x - \frac{\xi^2}{4}) - \frac{\xi^2}{4}} dx = e^{-\frac{\xi^2}{4}} \int_{-\infty}^{\infty} e^{-(x + \frac{i\xi}{2})^2} dx$$

The intuition at this point is that sliding the integral from $-\infty$ to $+\infty$ along the real axis to be an integral from $-i\xi - \infty$ to $-i\xi + \infty$ will not change the value of the integral, since there are no residues to pick up, while it will convert the integrand back to e^{-x^2} , which does not involve ξ .

As usual, an integral from $-\infty$ to $+\infty$ is a limit of the corresponding integral from -R to +R, as $R \to +\infty$. Then

$$\int_{-\infty}^{\infty} e^{-(x+\frac{i\xi}{2})^2} dx = \lim_{R} \int_{-R}^{R} e^{-(x+\frac{i\xi}{2})^2} dx = \int_{-i\xi-R}^{-i\xi+R} e^{-x^2} dx$$

Let B_R be the rectangle with vertices $\pm R$ and $-i\xi \pm R$, traced counter-clockwise. The integrals over the ends of the box are easily estimated: since $|e^{-(x+iy)^2}| = e^{-\operatorname{Re}(x+iy)^2} = e^{-x^2+y^2}$,

$$\left| \int_{R}^{-i\xi+R} e^{-x^{2}} dx \right| \leq \text{length} \cdot (\text{sup on curve}) \leq |\xi| \cdot e^{-R^{2}} \cdot e^{\xi^{2}} \longrightarrow 0 \quad (\text{as } R \to +\infty)$$

Thus,

$$0 = \lim_{R \to \infty} 0 = \lim_{R} \int_{B_R} e^{-i\xi x} e^{-x^2} dx = \lim_{R} \left(e^{-\frac{\xi^2}{4}} \int_{-i\xi - R}^{-i\xi + R} e^{-x^2} dx - e^{-\frac{\xi^2}{4}} \int_{-R}^{R} e^{-x^2} dx \right)$$

 \mathbf{SO}

$$\int_{-\infty}^{\infty} e^{-x^2} dx = e^{-\frac{\xi^2}{4}} \cdot \int_{-\infty}^{\infty} e^{-x^2} dx = e^{-\frac{\xi^2}{4}} \cdot \sqrt{\pi}$$

and

$$\int_{-\infty}^{\infty} e^{-i\xi x} x e^{-x^2} dx = -\frac{1}{2}i\xi \int_{-\infty}^{\infty} e^{-i\xi x} e^{-x^2} dx = -\frac{1}{2}i\xi \cdot e^{-\frac{\xi^2}{4}} \cdot \sqrt{\pi}$$

[04.5] For continuous φ on the unit circle |z| = 1, define

$$f_{\varphi}(z) = \int_{0}^{2\pi} \frac{\varphi(e^{i\theta})}{e^{i\theta} - z} d\theta \qquad (\text{for } |z| < 1)$$

Show that f(z) is holomorphic. Give an example of φ not identically 0 so that f_{φ} is identically 0. Use Morera's theorem: with γ be a small counter-clockwise triangle around a given z_o in the open unit disk,

$$\int_{\gamma} f_{\varphi}(z) dz = \int_{\gamma} \int_{0}^{2\pi} \frac{\varphi(e^{i\theta})}{e^{i\theta} - z} d\theta dz = \int_{0}^{2\pi} \varphi(e^{i\theta}) \left(\int_{\gamma} \frac{dz}{e^{i\theta} - z} \right) d\theta = \int_{0}^{2\pi} 0 d\theta = 0$$

///

Morera's theorem says that this vanishing implies holomorphy of f_{φ} .

Note that the given integral is not quite a written-out version of Cauchy's kernel, because $d(e^{i\theta}) = i\theta e^{i\theta} d\theta$, so a factor of $e^{i\theta}$ is missing. Nevertheless, it's *close*. Thus, various heuristics might suggest making $\varphi(e^{i\theta})$ be the boundary value of an *anti-holomorphic* function such as $F(z) = \overline{z}$. Thus, $\varphi(e^{i\theta}) = F(e^{i\theta}) = e^{-i\theta}$. For |z| < 1, expanding a geometric series:

$$f_{\varphi}(z) = \int_{0}^{2\pi} \frac{\varphi(e^{i\theta})}{e^{i\theta} - z} \, d\theta = \int_{0}^{2\pi} \frac{e^{-i\theta}}{e^{i\theta} - z} \, d\theta = \int_{0}^{2\pi} e^{-i\theta} \frac{e^{-i\theta}}{1 - ze^{-i\theta}} \, d\theta = \sum_{n=0}^{\infty} \int_{0}^{2\pi} e^{-2i\theta} \left(ze^{-i\theta} \right)^{n} \, d\theta$$
$$= \sum_{n=0}^{\infty} z^{n} \int_{0}^{2\pi} e^{-i(2+n)\theta} \, d\theta = \sum_{n=0}^{\infty} z^{n} \cdot 0 = 0$$

///

Thus, with hindsight, $\varphi(e^{i\theta}) = 1$ would also have given $f_{\varphi} = 0$.

[04.6] Let f be an entire function such that f(z+1) = f(z) and f(z+i) = f(z) for all z. Show that f is constant.

First, the given *periodicity relations* imply that all the values of f are determined by its values on $R = \{z = x + iy : 0 \le x \le 1, 0 \le y \le 1\}$: given x, y, there are unique integers m, n such that $m \le x < m+1$ and $n \le y < n+1$. By the obvious induction,

$$f(x+iy) = f((x-m)+i(y-n))$$

while $0 \le x - m < 1$ and $0 \le y - n < 1$. On the compact set $0 \le x \le 1$ and $0 \le y \le 1$, the continuous function f is bounded. Thus, f is entire and bounded, so by Liouville, it is constant. ///

[04.7] Show that a *real-valued* holomorphic function is constant.

For f real-valued on a neighborhood of z_o , taking a derivative along a *real* direction, but also along a *purely imaginary* direction, gives

$$f'(z_o) = \lim_{\varepsilon \to 0} \frac{f(z_o + \varepsilon) - f(z_o)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{f(z_o + i\varepsilon) - f(z_o)}{i\varepsilon}$$
(with ε real)

The first limit is real, the second imaginary, so the equality implies that they are both 0. Thus, f' = 0, and f is constant.

Another kind of argument, applicable to *entire* functions with constrained values: for f were entire and real-valued, the function $F(z) = e^{if(z)}$ takes values on the unit circle. In particular, F is *bounded* and entire, so *constant*, by Liouville. Then $0 = F'(z) = if'(z)e^{if(z)}$, so f'(z) = 0, and f is constant. ///

[04.8] The *Bergmann kernel* of the unit disk is

$$K(z,w) = \frac{1}{\pi} \frac{1}{(1-\overline{w} z)^2}$$

For f holomorphic on the open unit disk and extending continuously to a continuous function on the *closed* unit disk, show that

$$f(w) = \int \int_{x^2 + y^2 \le 1} f(x + iy) \overline{K(z, w)} \, dx \, dy$$

In fact, it is better to *derive* the kernel from first principles. That is, holomorphic functions on the unit disk that extend to be continuous on the closed disk are *bounded*, so we can put the *hermitian inner product*

$$\langle f,g \rangle = \int \int_{x^2+y^2 \le 1} f(x+iy) \ \overline{g(x+iy)} \ dx \ dy$$

on the \mathbb{C} -vector space of such functions. It is natural to wonder about $\langle z^m, z^n \rangle$:

$$\begin{aligned} \langle z^{m}, z^{n} \rangle &= \int \int_{x^{2}+y^{2} \leq 1} z^{m} \, \overline{z}^{n} \, dx \, dy \, = \, \int_{0}^{1} \int_{0}^{2\pi} r^{m+n} \, e^{\pi i (n-m)\theta} \, d\theta \, r \, dr \\ &= \, \delta_{mn} \, 2\pi \int_{0}^{1} r^{2n} \, r \, dr \, = \, \delta_{mn} \frac{\pi}{n+1} \end{aligned}$$

with $\delta_{mn} = 1$ if m = n and 0 otherwise. Thus, $u_n(z) = z^n \cdot \sqrt{\frac{n+1}{\pi}}$ is an orthonormal basis, and the reproducing kernel, or Bergmann kernel, is

$$K(z,w) = \sum_{n} u_{n}(z) \cdot \overline{u_{n}(w)} = \frac{1}{\pi} \sum_{n=0}^{\infty} (n+1) z^{n} \overline{w}^{n} = \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{1}{\overline{w}} \frac{d}{dz} (z\overline{w})^{n+1}$$
$$= \frac{1}{\pi} \frac{1}{\overline{w}} \frac{d}{dz} \frac{z\overline{w}}{1-z\overline{w}} = \frac{1}{\pi} \frac{1}{(1-z\overline{w})^{2}}$$

Just to check, use the power series expansion $f(z) = \sum_{n \ge 0} c_n z^n$, expand the kernel as a geometric series

$$\frac{1}{\pi} \frac{1}{(1-\overline{w}\,z)^2} = \frac{1}{\pi} \frac{1}{\overline{w}} \frac{d}{dz} \frac{1}{1-\overline{w}\,z} = \frac{1}{\pi} \frac{1}{\overline{w}} \frac{d}{dz} \left(1+\overline{w}\,z+(\overline{w}\,z)^2+\dots\right) = \frac{1}{\pi} \left(1+2\overline{w}\,z+3(\overline{w}\,z)^2+\dots\right)$$

Then the integral is

$$\frac{1}{\pi} \sum_{m \ge 0, n \ge 0} c_n \int \int_{x^2 + y^2 \le 1} z^n \ (m+1) w^m \,\overline{z}^m \ dx \, dy$$

In polar coordinates $z = re^{i\theta}$, this becomes

$$\frac{1}{\pi} \sum_{m \ge 0, \ n \ge 0} c_n \int_0^1 \int_0^{2\pi} r^{m+n} \ (m+1) w^m e^{i(n-m)\theta} \ d\theta \ r \ dr \ = \ \frac{1}{\pi} \sum_{n \ge 0} c_n \ 2\pi (n+1) w^n \int_0^1 r^{2n} \ r \ dr$$
$$= \ \sum_{n \ge 0} c_n \ 2(n+1) w^n \frac{1}{2n+2} \ = \ \sum_{n \ge 0} c_n \ w^n \ = \ f(w)$$