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[07.1] Exhibit a linear fractional transformation mapping 1, 2, 3 to z1, z2, z3.

Presumably the zi are distinct, or else this is impossible. We know the qualitative fact that linear fractional
transformations are transitive on triples of distinct points on CP1, and this question is asking for a formula,
which will involve variants of what was classically called the cross ratio.

An unglamorous but systematic approach is to map one triple of distinct numbers to 0, 1,∞, and then back

from 0, 1,∞ to the other, or similar. There are various computational approaches to obtaining

(
a b
c d

)
mapping given z1, z2, z3 to 0, 1,∞. One approach is to first map z3 → ∞ and z1 → 0, which is easily done

via

(
1 −z1
1 −z3

)
. This sends z2 →

z2 − z1
z2 − z3

. To subsequently send the latter to 1 while stabilizing 0 and ∞,

multiply by the multiplicative inverse of the latter complex number. Thus,

z −→ z − z1
z − z3

−→ z − z1
z − z3

· z2 − z3
z2 − z1

=
z2 − z3
z2 − z1

(
1 −z1
1 −z3

)
(z) (sends z1, z2, z3 to 0, 1,∞)

The matrix inverse is (
1 −z1
1 −z3

)−1
=

1

−z3 + z1

(
−z3 z1
−1 1

)
(z)

Thus,

z −→
(
−z3 z1
−1 1

)(z2 − z1
z2 − z3

· z
)

(sends 0, 1,∞ to z1, z2, z3)

We can send 1, 2, 3 to 0, 1,∞ by

z −→ z − 1

z − 3
−→ z − 1

z − 3
· 2− 3

2− 1
= − z − 1

z − 3
=

(
−1 1

1 −3

)
(z)

Thus, the composition of the maps 1, 2, 3 to 0, 1,∞ and then to z1, z2, z3 is

z −→
(
−z3 z1
−1 1

)(z2 − z1
z2 − z3

·
(
− z − 1

z − 3

))
(sends 1, 2, 3 to z1, z2, z3)

So-called simplification is most likely misguided. ///

[07.2] Exhibit a linear fractional transformation mapping the circle |z| = 1 to the line Re(z) = Im(z).

Use the fact that linear fractional transformations preserve the collection of lines-and-circles, and that a
line-or-circle is determined by three points on it, so tracking three points suffices to determine the image.

The Cayley map z → z + i

iz + 1
fixes ±1, and sends i→∞, so maps the unit circle to the real line. Then rotate

by eiπ/4. Altogether, this is

z −→ eiπ/4 · z + i

iz + 1
=

eiπ/4z + ei·5π/4

iz + 1
=

(
eiπ/4 ei·5π/4

i 1

)
(z)

mapping the unit circle to the diagonal. ///
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[07.3] Exhibit a linear fractional transformation stabilizing the (open) upper half-plane H and mapping i
to 2 + i.

Granting that SL2(R) stabilizes H, and noting the general possibility(
1 x
0 1

)(√
y 0

0 1√
y

)
(i) = x+ iy

we simply have (
1 2
0 1

)
(i) = 2 + i

as desired. ///

[07.4] Given 0 < t < 1, exhibit a linear fractional transformation stabilizing the open unit disk, and
mapping 0 to t.

Grant that the standard SU(1, 1) stabilizes the open unit disk, and that

(
coshu sinhu
sinhu coshu

)
is in SU(1, 1).

Rather than try to solve equations involving hyperbolic functions, observe that for v = coshu > 1,(
v

√
v2 − 1√

v2 − 1 v

)
is in SU(1, 1). It maps 0→

√
v2−1
v . Thus, solve for v in

√
v2 − 1

v
= t (solve for v)

Multiply through by v, and square:
v2 − 1 = v2 · t2

or (1− t2)v2 = 1 and then v = 1/
√

1− t2. Then(
v

√
v2 − 1√

v2 − 1 v

)
=

(
1√
1−t2

t√
1−t2

t√
1−t2

1√
1−t2

)
(maps 0 to t)

as desired. ///

[07.5] Exhibit a conformal map of the sector {reiθ : r > 0, 0 < θ < π
4 } to the unit disk.

First, note that the eighth-power map does not quite accomplish this, since the image of this open sector
under the eighth power map omits the real interval [0, 1). Instead, the fourth power map z → z4 does send
this sector to the open upper half-plane H, and then the inverse Cayley map sends H to the open unit disk.

Thus, z → z4−i
−iz4+1 maps the given sector to the open unit disk.

[07.6] Exhibit a conformal map from the strip {z = x+ iy : c < ax+ by < c′} to the crescent

Ω = {z : |z| < 1, |z − 1
2 | >

1
2}

Both resgions are examples of degenerate bi-gons, namely, where the vertices are not distinct points, and,
necessarily, the angles at the vertices are 0.

Perhaps it’s easier to go in the opposite direction, since it’s easier to adjust strips by rotations and dilations
than to adjust crescents by linear fractional transformations stabilizing the outer circle, for example. Thus,
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map the single vertex z1 = 1 of the crescent to ∞, by z → 1
z−1 . The image of the outer circle is determined

by tracking two more points on it, for example ±i, and the image of the inner by tracking two points on it,
for example, 0 and 1+i

2 . That is, the image of the outer circle is the straight line through 1
i−1 = −i−1

2 and
1
−i−1 = i−1

2 , while the image of the inner circle is the straight line through 1
−1 = −1 and

1
1+i
2 − 1

=
2

1 + i− 2
=

2

i− 1
= −i− 1

That is, the image of the outer circle is the vertical line through − 1
2 , and the image of the inner circle is the

vertical line through −1. Thus, the image of the crescent under z → 1
z−1 is the strip {z : −1 < Re(z) < − 1

2}.

Meanwhile, a relation {z = x+ iy : c < ax+ by < c′} with real parameters a, b, c, c′ can be rewritten as

{z : c < Re
(
z · (a− ib)

)
< c′} = (a− ib)−1 · {z : c < Re(z) < c′}

Further real translation and dilation can map any vertical strip to any other:

{z : c < Re(z) < c′} = c+ {z : 0 < Re(z) < c′ − c} = (c′ − c) ·
(
c+ {z : 0 < Re(z) < 1}

)
In the case at hand, first map by z → 1

z−1 to the strip −1 < Re(z) < − 1
2 , then by z → z+1 to 0 < Re(z) < 1

2 ,

then by z → z/2(c′− c) to 0 < Re(z) < c′− c, then by z → z+ c to c < Re(z) < c′, then by z → (a− bi)−1z
to c < ax+ by < c′. ///

[07.7] Let holomorphic f : CP1 → CP1 be 2-to-1. Show that there are two linear fractional transformations
α, β such that α ◦ f ◦ β is the map z → z2.

The 2-to-1 property surely counts multiplicities.

We have shown that all holomorphic maps CP1 → CP1 are rational maps f(z) = P (z)/Q(z) with polynomials
P,Q. Without loss of generality P,Q are relatively prime in the principal ideal domain C[X]. Certainly Q
is not identically 0. If the degree of P is greater than 2, then (counting multiplicities) more than 2 points
map to 0, contradiction. Similarly, if the degree of Q is more than 2, then more than 2 points map to ∞,
contradiction.

Let P (z) = az2 + bz+ c and Q(z) = Az2 +Bz+C. Not both a,A can be 0, or else this is a linear fractional
transformation, and is not 2-to-1. Post-composing with z → 1/z if necessary, we can suppose that A 6= 0.
Then post-compose with a translation to make a = 0. This will simplify the algebra. Then

(P/Q)′(z) =
b(Az2 +Bz + C)− (bz + c)(2Az +B)

Q2(z)

The numerator is

(bA)z2 + (bB)z + bC − (2bA)z2 − (bB + 2cA)z − cB = (−bA)z2 + (bB − bB − 2cA)z + (bC − cB)

= (−bA)z2 + 2(−cA)z + (bC − cB)

This has at least one zero unless the coefficients of z2 and z are both 0, which, since A 6= 0, would require
that P (z) = 0, contradiction.

Thus, there is a zero zo of the numerator. Then(P (z)

Q(z)
− P (zo)

Q(zo)

)′
= 0
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so zo is a double zero of P/Q − P (zo)/Q(zo), that is, P/Q takes the value P (zo)/Q(zo) with multiplicity
two at zo. Pre-composing and post-composing with translations, without loss of generality zo = 0 and
P (zo)/Q(zo) = 0. This reduces to the form z → z2/Q(z) with Q(z) = Az2 +Bz+C with A 6= 0 and C 6= 0.

Post-composing with z → 1/z, we can consider f(z) = Q(z)/z2, and by post-composing with a translation,
Q(z) = az + b. If a = 0, then f(z) = b/z2, and post-composing with z → 1/z (and with a dilation) gives
f(z) = z2.

With a 6= 0, and with b 6= 0 to avoid cancellation and reduction to a linear fractional transformation (which
would not be 2-to-1), computing a derivative again,

f ′(z) =
az2 − (az + b)2z

z4
=
−az2 − 2bz

z4
=
−az − 2b

z3

This has a zero at zo = −2b/a 6= 0. Thus, Q(z)
z2 −

Q(zo)
z2o

assumes the value 0 with multiplicity 2 at zo 6= 0.

Up to a constant, it is (z − zo)2/z2 =
(z − zo

z

)2
. Pre-composing with the inverse to z → (z − zo)/z makes

this f(z) = z2.

[07.8] What happens to the zero set of z → e2πiz under the perturbation z −→ e2πiz − hz for small h?

There are obvious variants of this, for example, z → e2πiz − 1 − hz really does have infinitely-many zeros
at h = 0, and as h moves away from 0 each one of these is (locally) a holomorphic function of h, by the
holomorphic inverse function theorem.

One reason to mention z → e2πiz−hz is to exhibit a seemingly discontinuous phenomenon, perhaps intuitively
opposite to the continuity of zeros already in existence: at h = 0 the function z → e2πiz it has no zeros
whatsoever, while for every non-zero h the function z → e2πiz − hz it suddenly has infinitely-many zeros.

Despite the abrupt change from h = 0 to h 6= 0, for the latter we can use the argument principle: estimate
the net change in the argument of f(z) around a large rectangle to estimate 2π times the number of zeros
inside the box. Naturally, we adjust the box slightly so that no zeros are exactly on its edges.

Along the bottom edge of the box, |e2πiz| = e−2πIm(z) tends to be larger than |h| · |z| simply because
exponentials grow faster than polynomials. The limit of this is the possibility that the rectangle is very wide
in comparison to its height, so that x = Re(z) becomes large enough so that e−2πy < |h| · |z|. Excluding the
latter possibility, the argument of e2πiz − hz is within π/2 of the argument of e2πiz, which changes by 2π
times the width of the box.

Along the top edge, |e2πiz| = e−2πy tends to be smaller than |h| · |z|, so the argument of e2πiz − hz is within
π/2 of the argument of h · z, which changes by less than π along the top of the box.

Along left or right vertical edges, use the idea that the net change in argument along a given curve is at
most 2π · (q + 1) where q is the number of zeros of the real part of e2πiz − hz along the curve. The real
part of the function here is e−2πy cosx−Re(h)x− Im(h)y. For simplicity, adjust the location of the vertical
sides of the box by a small amount so that cosx = 0. Then the real part vanishes at most once, so the total
change in argument is at most 2π · 2 = O(1), using Landau’s big-O notation.

Thus, on a sufficiently large (depending on h) box with vertices ±T ± iT , adjusting the location of the
vertical sides slightly, the number of zeros inside is

1

2π

(
change in arg over top, bottom, left, right

)
=

1

2π

(
2π · 2T +O(1)

)
= 2T +O(1)

In fact, examining the estimates, the top edge can be much lower, and the left and right sides can be pushed
out quite a lot, and the same type of formula applies. ///
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