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[08.1] Check that the Euclidean Laplacian ∆ =
∑n
i=1

∂2

∂x2
i

on Rn is rotation-invariant, in the following

sense. A rotation is a linear map g : Rn → Rn preserving the usual inner product 〈x, y〉 =
∑
i xiyi, and

preserving orientations (so det g = 1, rather than −1). The asserted rotation-invariance is

∆(f ◦ g) = (∆f) ◦ g (for twice-differentiable f and rotation g)

(In fact, ∆ is also preserved by reflections, which are orientation-reversing, so the determinant condition can
be safely ignored.)

The n-by-n real matrix g is a rotation-or-reflection when g>g = 1n. Element-wise, this is

δik =
∑
j

(g>)ijgjk =
∑
j

gjigjk (with Kronecker delta δik)

Elements x ∈ Rn can be expressed as either row vectors or column vectors, with g acting either by right
multiplication or left, respectively, without affecting the conclusion. We choose row vectors and right
multiplication:

∆(f ◦ g)(x) =
∑
`

(
∂

∂x`
)2f(. . . ,

∑
i

xigij , . . .) =
∑
`

∂

∂x`

∑
s

g`sfs(. . . ,
∑
j

xigij , . . .)

where fs is the partial derivative of f with respect to its sth argument. Taking the next derivative gives∑
`

∑
s,t

g`sg`tfst(. . . ,
∑
i

xigij , . . .)

Interchange the order of the sums and use
∑
` g`sg`t = δst:∑

s

fss(. . . ,
∑
i

xigij , . . .) = (∆f)(xg) = ((∆f) ◦ g)(x)

as desired. ///

[08.2] Check that for harmonic h and holomorphic f , the composition h ◦ f is invariably harmonic, while
f ◦ h need not be. (Yes, much of the issue is suitable formulation of the computation.)

First the easy part: with holomorphic f(z) = z2 and harmonic h(x+ iy) = y,

f(h(x+ iy)) = f(y) = y2

and ∆y2 = 2 6= 0, so f ◦ h is not harmonic.

To prove that h ◦ f is harmonic, write h as a function of the real and imaginary parts of a complex number,
and write f(x+ iy) = u(x, y) + iv(x, y). Then

∆(h(u(x, y), v(x, y))) =
( ∂2
∂x2

+
∂2

∂y2

)
h(u(x, y), v(x, y)))

=
∂

∂x

(
h1(u, v)ux + h2(u, v)vx

)
+

∂

∂y

(
h1(u, v)uy + h2(u, v)vy

)
=
(
h11u

2
x + (h12 +h21)uxvx +h1uxx +h22v

2
x +h2vxx

)
+
(
h11u

2
y + (h12 +h21)uyvy +h1uyy +h22v

2
y +h2vyy

)
= h11(u2x + u2y) + (h12 + h21)(uxvx + uyvy) + h1(uxx + uyy) + h22(v2x + v2y) + h2(vxx + vyy)
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The real and imaginary parts u, v of f are themselves harmonic, so the h1 and h2 terms vanish, leaving

h11(u2x + u2y) + (h12 + h21)(uxvx + uyvy) + h22(v2x + v2y)

In terms of real and imaginary parts, the Cauchy-Riemann equation( ∂
∂x
− i ∂

∂y

)
(u+ iv) = 0

becomes
ux + vy = 0 and − uy + vx = 0

Thus, the coefficient of h12 + h21 is

uxvx + uyvy = uxuy + uy(−ux) = 0

and

h11(u2x + u2y) + h22(v2x + v2y) = h11(u2x + v2x) + h22(v2x + (−ux)2) = (h11 + h22) · (u2x + v2x) = 0 · (u2x + v2x)

so h ◦ f is holomorphic. ///

[08.3] Show that every harmonic function u on an annulus r < |z| < R is of the form

u(z) = a0 + b0 log |z|+
∑

06=n∈Z

(
anz

n + bnz
n
)

for constants ai, bi.

Use polar coordinates z = reiθ on 0 < |z| < 1, and express u as a Fourier series in θ with coefficients that
are functions of r:

u(reiθ) =
∑
n∈Z

cn(r) einθ

In polar coordinates, with u(reiθ) = f(r, θ), with r =
√
x2 + y2 and θ = arctan y

x ,

rx =
x

r
ry =

y

r
θx =

− y
x2

1 + ( yx )2
=
−y
r2

θy =
1
x

1 + ( yx )2
=

x

r2

and the Laplacian is

∆u = =
∂

∂x

(
frrx − fθθx

)
+

∂

∂y

(
frry + fθθy

)
=

∂

∂x

(
fr
x

r
− fθ

y

r2

)
+

∂

∂y

(
fr
y

r
+ fθ

x

r2

)

=
(
frr
(x
r

)2
+ fr

(1

r
− x2

r3
)
− (frθ + fθr)

xy

r3
+ fθθ

( y
r2
)2 − fθ 2xy

r4

)
+
(
frr
(y
r

)2
+ fr

(1

r
− y2

r3
)

+ (frθ + fθr)
xy

r3
+ fθθ

( x
r2
)2

+ fθ
2xy

r4

)
= frr +

fr
r

+
fθθ
r2

=
( ∂2
∂r2

+
1

r

∂

∂r
+ +

1

r2
∂2

∂θ2

)
f

Applying this to the Fourier expansion, differentiating termwise,

0 = ∆f(r, θ) =
∑
n

∆(cn(r)einθ) =
(
c′′n +

1

r
c′n +

1

r2
cn(in)2

)
einθ
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By uniqueness of Fourier expansions,

c′′n +
1

r
c′n −

n2

r2
cn = 0

This equation is of Euler type, with indicial equation

α(α− 1) + α− n2 = 0

with solutions α = ±n. For n = 0, the root α = 0 is doubled, and solutions of the differential equation are
r0 = 1 and r0 · log r = log r. For n 6= 0, the solutions are rn and r−n.

Translating back to z and z coordinates, we obtain the indicated expansion. ///

[08.4] Show that a harmonic function u on 0 < |z| < 1 such that∫
0<x2+y2<1

|u(x+ iy)|2 dx dy < ∞

is of the form u(x+ iy) = v(x+ iy) + c log |z| for v harmonic on the disk |z| < 1, for some constant c.

There is a Fourier expansion

u(z) =
∑
n∈Z

cn(r) einθ

and the integral of |u|2 over the punctured disk is∫
0<r<1

|u|2 =
∑
m,n

∫ 1

0

cm(r) cn(r)
(∫ 2π

0

eimθe−inθ dθ
)
r dr = 2π

∑
n

∫ 1

0

|cn(r)|2r dr

by orthogonality of distinct exponentials. From the previous example, the 0th Fourier coefficient is a linear
combination a0 + b0 log r, and∫ 1

0

∣∣a0 + b0 log r
∣∣2 r dr < ∞ (for arbitrary a0, b0)

In contrast, for n > 0,∫ 1

0

∣∣anrn + bnr
−n∣∣2 r dr =

∫ 1

0

(
|an|2r2n + (anb̄n + ānbn) + |bn|2r−2n

)
r dr

The first two summands have finite integrals, but
∫ 1

0
r−2n r dr = +∞. Thus, bn = 0. That is, apart from the

log r term, the only non-zero coefficients in the Fourier expansion give terms zn = rne−nθ and zn = rne−inθ

with n ≥ 0. A sum of such terms is harmonic on the whole disk. ///

[08.5] Define f on the unit circle by f(eiθ) = θ2, for −π < θ < π. Find a harmonic function u on the open
disk whose boundary values are f .

There are several ways to think about this. One is to determine the Fourier expansion of the boundary-value
function, make the obvious extension to a sum of power series in z and z as in that sort of derivation of the
Poisson kernel, and then presumably sum the resulting series to an elementary function. Yes, this amounts
to re-doing part of the discussion of the Poisson kernel, but may be a reasonable choice in circumstances
where the integral against the Poisson kernel cannot be expressed in elementary closed form.

The 0th Fourier coefficient of the function F (θ)→ θ2 on [−π, π] is

F̂ (0) =
1

2π

∫ π

−π
F (θ) dθ =

π3/3

2π
=

π2

6
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For n 6= 0, the nth Fourier coefficient is computed by integrating by parts:

F̂ (n) =
1

2π

∫ π

−π
θ2 · e−inθ dθ =

1

2π

[
θ2 · e

−inθ

−in

]π
−π
− 1

2π

∫ π

−π
2θ · e

−inθ

−in
dθ =

1

πin

∫ π

−π
θ · e−inθ dθ

=
1

πin

[
θ · e

−inθ

−in

]π
−π
− 1

πin

∫ π

−π

e−inθ

−in
dθ =

(−1)n

n2

Thus,

f(eiθ) = F (θ) =
π2

6
+
∑
n 6=0

(−1)n

n2
einθ

As in the Fourier series treatment of the Dirichlet problem, extend the positive-index exponentials to powers
of z and the negative exponentials to powers of z: put

u(z) =
π2

6
+
∑
n≥1

(−1)n

n2
zn +

∑
n≥1

(−1)n

n2
zn

This function seems to have no simpler expression, although there is the related elementary identity

d

dx

(∑
n≥1

(−1)n

n2
xn
)

= −1 +
z

2
− z2

3
− . . . = − 1

x
log(1 + x)

[08.6] (Euler-type equations of second order) An ordinary differential equation of the form

u′′ +
b

x
u′ +

c

x2
u = 0

with constants b, c is said to be of Euler type. Show that it has solutions xα and xβ where α, β are solutions
of the auxiliary equation

λ(λ− 1) + bλ+ c = 0

Show that xα log x is the second solution if the root of the auxiliary equation is double, i.e., if α = β. Use
the Mean Value Theorem to genuinely prove that there are no other solutions.

We choose to consider these differential equations on (0,+∞), so that complex powers xα are unambiguous.

Among various ways to discuss Euler-type equations, an approach that scales up to higher-degree versions

xnu(n) + cn−1x
n−1u(n−1) + . . .+ c2x

2u′′ + c1xu
′ + c0u = 0

observes that differential operators x` ∂
`

∂x` are all polynomials in the single operator x ∂
∂x , and factors the

differential operator

xn
∂n

∂xn
+ cn−1x

n−1 ∂
n−1

∂xn−1
+ . . .+ +c1x

∂

∂x
+ c0 =

(
x
∂

∂x
− α1

)(
x
∂

∂x
− α2

)
. . .
(
x
∂

∂x
− αn

)
for constants αj . We solve the equation

(
x
∂

∂x
− α1

)(
x
∂

∂x
− α2

)
. . .
(
x
∂

∂x
− αn

)
u = 0

in steps, first solving
(
x ∂
∂x − α1

)
u1 = 0, then

(
x ∂
∂x − α2

)
u2 = u1, then

(
x ∂
∂x − α3

)
u3 = u2, and so on.
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Solving xu′ − αu = 0 is easy: u(x) is a constant multiple of xα. Uniqueness is proven via the mean value
theorem: for another solution u(x), with v(x) = u(x)/xα,

x(xαv)′ − α(xαv) = 0

gives
0 = x(αxα−1v + xαv′)− αxαv = xα+1v′

That is, v′ = 0 and v is a constant, proving uniqueness.

Continue by induction: xu′ − αu = xβ with α 6= β has solution xβ/(β − α), and uniqueness for the
associated homogeneous equation gives uniqueness. Thus, when the αi are all different, all solutions are
linear combinations of xαi .

To treat multiple roots, a general observation is helpful: for any (linear) differential operator D and function
u satisfying (D − λ)u = 0, with u depending of course on λ, differentiation in λ gives

−u+ (D − λ)∂u

∂λ = 0

or
(D − λ)∂u

∂λ = u

Repeating,
(D − λ)∂2u

∂λ2 = ∂u
∂λ

and so on. In the case at hand, the nth derivative of xα with respect to the eigenvalue α is xα · logn x, and

(x
∂

∂x
− α)(xα · logn x) = xα · logn−1 x

Thus, with roots α with multiplicities ν = να, all solutions are linear combinations of
xα, xα log x, xα log2 x, . . . , xα logν−1 x. ///

[08.7] (Rotationally invariant harmonic functions in Rn) For f twice-differentiable on Rn, expressible as
a (twice-differentiable) function of the radius r alone (at least away from 0), say f is spherically symmetric
or rotationally invariant. (This could also be formulated as invariance under the action of the orthogonal
group by rotations). Show that

∆ f = f ′′ +
n− 1

r
f ′

(This is of Euler type). On Rn − {0}, find two linearly independent harmonic functions.

Compute directly, with r =
√
x21 + . . .+ xn,

∆f(r) =
∑
i

∂2

∂x2i
f(r) =

∑
i

∂

∂xi

(xi
r
· f ′(r)

)
=
∑
i

∂

∂xi

(1

r
f ′ − x2i

r3
f ′ +

(xi
r

)2
f ′′
)

= f ′′ +
n− 1

r
f ′

The indicial equation is
λ(λ− 1) + (n− 1)λ = 0

so λ = 0, 2− n. For n 6= 2, the roots are distinct, giving linearly independent solutions 1, x2−n. For n = 2,
the root is doubled, giving linearly independent solutions 1, log x.

[08.8] The Fourier expansion

δ(θ) =
∑
n∈Z

einθ =
∑
n∈Z

δ̂(n) einθ (with δ̂(n) = 1 for all n ∈ Z)
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certainly does not converge pointwise, but does make sense as the expansion of the periodic Dirac δ, sometimes
called Dirac comb function on R/2πZ, in the following sense. The Plancherel identity

〈u, v〉 =
1

2π

∫ 2π

0

u(θ) v(θ) dθ =
∑
n∈Z

û(n) · v̂(n) (for u, v ∈ L2(S1))

L2(S1)×L2(S1)→ C can be restricted in the first argument and extended in the second, so that for smooth
u(θ) =

∑
n∈Z û(n) einθ, pairing against δ correctly evaluates u at θ = 0:

u(0) =
∑
n

û(n) ein·0 =
∑
n∈Z

û(n) · 1 =
∑
n∈Z

û(n) · δ̂(n) = 〈u, δ〉

Identifying the circle with the boundary {z : |z| = 1} of the disk {z : |z| < 1}, determine the harmonic
function on the disk whose boundary value function is the periodic Dirac δ.

Again following the path in the Fourier series derivation of the Poisson kernel, replace positive-index Fourier
terms by powers of z, and negative-index Fourier terms by powers of z, producing

u(z) = 1 +
∑
n≥1

zn +
∑
n≥1

zn = 1 +
z

1− z
+

z

1− z
=

(1− z − z + |z|2) + z(1− z) + z(1− z)
(1− z)(1− z)

=
1− |z|2

|1− z|2

Yes, this is the Poisson kernel P (eiθ, z) at θ = 0. ///

6


