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If you want feedback from me on your treatment of these examples, please get your work to me by Friday,
Mar 27, preferably as a PDF emailed to me.

[10.1] Show that there is a well-defined, holomorphic function 1/
√

1 + z4 on the region |z| > 1. Show that∫
γ

dz√
1 + z4

= 0, where γ traces out |z| = 2.

There is a function 1/
√

1 + z4 ± i well-defined on |z| > 1, because

1√
1 + z4

=
1√

z4(1 + 1
z4 )

=
1

z2
· 1√

1 + 1
z4

For |1/z4| < 1, the quantity 1+ 1
z4 stays in the right half-plane, so has a holomorphic square root throughout

|z| > 1. The Laurent expansion of the original function is then

1√
1 + z4

=
1

z2
· 1√

1 + 1
z4

=
1

z2
· (1 +

1

z4
)−

1
2 =

1

z2
·
(

1− 1
2

1

z4
+ . . .

)

By Cauchy’s theorem, the path integral of zn around |z| = 2 is 0 except for n = −1, in which case it is 2πi.
But there is no 1/z term in that Laurent expansion. ///

[10.2] Let γ be a simple closed path counter-clockwise encircling 0, 2, and not enclosing −2. Let δ be a
simple closed path counter-clockwise encircling −2, 0, and not enclosing 2. Show that there is a holomorphic
function 1/

√
z(z2 − 4) on the annulus 1 < |z − 1| < 3, and a holomorphic function 1/

√
z(z2 − 4) on the

annulus 1 < |z + 1| < 3. Show that the two periods∫
γ

dz√
z(z2 − 4)

∫
δ

dz√
z(z2 − 4)

are linearly independent over R.

In fact, one is purely imaginary and the other is purely real. To show holomorphy in 1 < |z − 1| < 3 and
evaluate the integral around γ, we determine (to some degree!) a Laurent expansion in that annulus. First,

z(z2 − 4) = ((z − 1) + 1)((z − 1)− 1)((z − 1) + 3) = 3(z − 1)2 ·
(

1 +
1

z − 1

)(
1− 1

z − 1

)(
1 +

z − 1

3

)
Thus, the square root of the reciprocal is

1√
3 (z − 1)

·
(

1 +
1

z − 1

)− 1
2
(

1− 1

z − 1

)− 1
2
(

1 +
z − 1

3

)− 1
2

and although we cannot easily determine the coefficient of (z − 1)−1 in elementary terms, it is real, so the
integral gives 2πi times a real number.

Similarly, to obtain a Laurent expansion in the annulus 1 < |z + 1| < 3,

z(z2 − 4) = ((z + 1)− 1)((z + 1) + 1)((z + 1)− 3) = −3(z + 1)2 ·
(

1− 1

z + 1

)(
1 +

1

z + 1

)(
1− z + 1

3

)
1
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Note the sign! Taking a square root will give a Laurent expansion with purely imaginary coefficients, so the
integral gives 2πi times a purely imaginary number, thus, a real number.

How to check that these integrals are non-zero? Keeping in mind that we do not expect to be able to evaluate
them in more elementary terms, nevertheless we can hope to convert them to forms which are non-vanishing
for essentially elementary reasons. One approach is to deform the given contours to be Hankel/keyhole
contours, as follows. Because the denominator is essentially of order R3/2 for large R = |z+ 1|, and of order

r
1
2 for small r = |z + 1|, the path enclosing −2, 0 (and not enclosing +2) can be deformed to an integral

along a keyhole contour Hε from +2 to +∞ with a small circle of radius ε > 0 about 2. Recall that for
sufficiently small ε > 0 the value of the integral is independent of ε. To match the outcome of the Laurent
expansion, the integrand 1/

√
z(z2 − 4) is required to take a purely imaginary value when the path crosses

the real interval (1, 2) at 2 − ε. Thus, for continuity, the integrand is real on (2,+∞), and without loss of
generality non-negative. The integral over the Hankel contour is∫

Hε

dz√
z(z2 − 4)

=
1

1− eπi

∫ ∞
2

dt√
t(t2 − 4)

= 1
2 ·
∫ ∞

2

dt√
t(t2 − 4)

> 0

A similar argument applies to prove that the other period is non-zero. Thus, since one is purely imaginary
and the other purely real, they are linearly independent over R. ///

[10.3] Show that for irrational α ∈ R, the set {m+ nα : m,n ∈ Z} is dense in R.

(Kronecker) Let Γ be the topological closure of G = Z + Zα in R. Suppose for a moment that we know the
classification of all topologically-closed subgroups of R: either {0}, R, or of the form Z · β for some β ∈ R.
The first case cannot occur for G. If the last case occurs, then there are integers k, ` such that k · β = 1 and
` · β = α. But then α = `/k ∈ Q, contradiction.

To prove the classification, for Γ 6= {0}, closed under additive inverses, Γ contains positive elements. In the
case that there is a least positive element µ, claim that Γ = Z · µ. Indeed, for γ ∈ Γ, by the archimedean
property of R there is n ∈ Z such that nµ ≤ γ < (n + 1)µ. Necessarily nµ = γ, or else 0 < γ − nµ < µ,
contradicting the minimality.

In the case that there is not least positive µ, let µ1 > µ2 > . . . > 0 be an infinite descending sequence of
positive elements of Γ. The inf γo is in Γ, since Γ is topologically closed. Replace µn by µn−γo to be able to
assume that µn → 0. Again by archimedean-ness, Z · µn contains elements within µn of every real number.
Since µn → 0, for every ε > 0 Γ contains elements within ε of every real number. By closed-ness, Γ = R.

///

[10.4] Let v1, . . . , vn be linearly independent vectors in Rn, and Λ = Zv1 + . . .+ Zvn the lattice generated
by them. Let Rn have its usual inner product and associated metric. For r > 0 let Br be the ball of radius
0 centered at 0 ∈ Rn. Show that for small-enough r > 0 we have Br ∩ Λ = {0}.

Let A be the invertible n-by-n real matrix so that Avi = ei, where {ei} is the standard basis of Rn. The
map A : Rn → Rn by v → Av is continuous, and has continuous inverse given by multiplication by A−1.
Thus, there is a small-enough neighborhood U of 0 ∈ Rn such that the image AU is contained in the ball
B 1

2
of radius 1

2 centered at 0. Certainly B 1
2
∩ Zn = {0}. Then

U ∩ Λ ⊂ A−1
(
B 1

2
∩ Zn

)
= A−1{0} = {0}

Certainly U contains some ball at 0. ///

[10.5] Let Λ be a lattice in Rn, that is, the Z-module generated by n vectors linearly independent over R.
Prove that ∑

0 6=λ∈Λ

1

|λ|s

2
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is absolutely convergent for Re(s) > n, where | · | is the usual length in Rn. (Do not invoke any non-existent
integral tests in several variables, despite the fact that the idea of such gives a good heuristic.)

Use volume to give a reasonable upper bound on the number of lattice points in shells ` ≤ |x| ≤ ` + 1.
Namely, there is 0 < r < 1 so that balls of radius r centered at lattice points do not touch each other. If a
lattice point λ is in the shell ` ≤ |x| ≤ `+ 1, then the ball or radius r around is is inside the thickened shell
`− r ≤ |x| ≤ `+ r, which is inside the shell `− 1 ≤ |x| ≤ `+ 1. The latter has volume C · ((`+ 1)n− (`− 1)n

for a constant C depending on n. The total volume of all the balls of radius r around lattice points is at
most the volume of the thickened shell. Thus, the number of lattice points inside that shell has a good upper
bound:

# lattice points in {x ∈ Rn : ` ≤ |x ≤ `+ 1} ≤ C · ((`+ 1)n − (`− 1)n

C · rn
≤ C ′ · `n−1 (for ` > 1)

for some constant C ′. Similarly, for any radius R, the sum over |λ| < R is finite: for such lattice points, the
balls of radius r around them are disjoint, and all lie inside the sphere of radius R+ r at 0, which has finite
volume. Thus, to prove convergence, we can drop all λ ∈ Λ with |λ| ≤ R. Thus, for real s > 0 and R = 3,
we can bound the lattice-point sum by a one-dimensional sum:∑

λ∈Λ, |λ|≥3

1

|λ|s
=

∞∑
`=3

∑
`−1≤|λ|<`+1

1

|λ|s
≤

∞∑
`=3

∑
`−1≤|λ|<`+1

1

(`− 1)s

≤ C ′ ·
∞∑
`=3

`n−1 1

(`− 1)s
= C ′ ·

∞∑
`=2

(`+ 1)n−1 1

`s
≤ C ′ · 2n−1

∞∑
`=2

`n−1 1

`s

The usual one-dimensional integral test gives convergence of the latter for s− (n− 1) > 1, that is, for s > n.
///

[10.6] Recall that we need finite growth order |f(z)| � e|z|
N

as |z| → +∞ in a strip a ≤ Re(z) ≤ b, for
some N , before we can invoke the Phragmén-Lindelöf theorem. Use the integral representation of ζ(s) via
θ(y), and properties of Γ(s), to show that it has finite order of growth in −1 ≤ Re(s) ≤ 2.

The integral representation

π−
s
2 Γ(

s

2
) · ζ(s) =

∫ ∞
1

(ys/2 + y
1−s
2 )

θ(y)− 1

2

dy

y
+

1

s− 1
− 1

s
(with θ(y) =

∑
n∈Z e

−πn2y)

converges absolutely for s away from 0, 1. Thus, we can present s(1− s) · ζ(s) in a way that makes sense for
all s ∈ C:

s(1− s) · ζ(s) = s(1− s) · π
s
2

Γ( s2 )
·
(∫ ∞

1

(ys/2 + y
1−s
2 )

θ(y)− 1

2

dy

y
+

1

s− 1
− 1

s

)
=

π
s
2

Γ( s2 )
·
(
s(1− s)

∫ ∞
1

(ys/2 + y
1−s
2 )

θ(y)− 1

2

dy

y
− s− (1− s)

)
The function s→ πs/2 visibly has growth-order 1. Stirling’s asymptotic shows that in Re(s) ≥ 1

2 the function

s→ 1/Γ(s) has growth order 1, and the reflection relation 1/Γ(1−s) = sinπs
πΓ(s) yields the growth-order estimate

in Re(s) ≤ 1
2 . The integral is bounded in vertical strips of finite width, and the polynomials s and s− 1 have

growth order 0. Since the product and/or sum of functions of growth order α > 0 is again such a function,
this proves that s(1− s) · ζ(s) has growth order 1. (Phragmén-Lindelöf then gives a sharper assertion.)
///

[10.7] Show that f(x, y) = (x± iy)` e−π(x2+y2) is multiplied by i−` by Fourier transform

f̂(ξ, η) =

∫
R2

e−2πi(ξx+ηy) f(x, y) dx dy

3
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Hint: rewrite this in terms of z = x + iy and z, and another complex variable w = ξ + iη and w, and look
for a chance to differentiate under the integral defining the Fourier transform.

Following the hint, and taking the plus sign, the Fourier transform is

f̂(w,w) =

∫
R2

e−πi(zw+zw) z` e−πzz dx dy =
1

(−πi)`

∫
R2

( ∂

∂w

)`
e−πi(zw+zw) e−πzz dx dy

=
1

(−πi)`
·
( ∂

∂w

)` ∫
R2

e−πi(zw+zw) e−πzz dx dy =
1

(−πi)`
( ∂

∂w

)`
e−πww

since we already know that these pure Gaussians map to themselves under Fourier transform. Then this is

1

(−πi)`
(−πw)` · e−πww = i−` · w` e−πww

as claimed. The argument for the minus-sign case is identical. ///

[10.8] Define a harmonic theta function Θ`(y) by

Θ`(y) =


1

4

∑
(0,0)6=(m,n)∈Z2

(m+ in)` e−πy(m2+n2) (for ` > 0)

1

4

∑
(0,0) 6=(m,n)∈Z2

(m− in)|`| e−πy(m2+n2) (for ` < 0)

Show that this is identically 0 unless ` is divisible by 4, and prove the functional equation

Θ`(1/y) = y`+1 ·Θ`(y)

Replacing m± in by i · (m± in) is a bijection of non-zero Gaussian integers to themselves, so cannot alter
the sum. Yet a factor of i` comes out, so the whole sum is multiplied by i`. Thus, either the sum is 0, or
i` = 1.

In R2, by changing variables in the defining integral, f(
√
y ·v)̂ = 1

y f̂( 1
y ·v). Let f(u, v) = (u± iv) e−π(u2+v2).

Note that the term m = n = 0 in the sum defining the theta function vanishes for ` 6= 0, and we consider
only that situation. Also, take ` ∈ 4Z. The previous example’s computation of the Fourier transform of
(u± iv) e−π(u2+v2), Poisson summation, give

Θ(y) =
∑

m,n∈Z
(m±in)` e−πy(m2+n2) = y−`/2

∑
m,n∈Z

(
√
y(m±in))` e−πy(m2+n2) = y−`/2

∑
m,n∈Z

f(
√
y·(m,n))

= y−`/2
1

y

∑
m,n∈Z

f̂(
1
√
y
· (m,n)) = y−`/2

1

y
i−`

∑
m,n∈Z

(
1
√
y

(m± in))` e−πy(m2+n2)

= y−`
1

y

∑
m,n∈Z

(m± in)` e−πy(m2+n2) =
1

y`+1
Θ(

1

y
)

as claimed. ///

[10.9] Let χ(α) = (α/|α|)` for α ∈ C×. The associated Hecke L-function on the Gaussian integers Z[i] is

L(s, χ) =
1

#Z[i]×

∑
0 6=α∈Z[i]

χ(α)

|α|2s
=

1

4

∑
06=α∈Z[i]

χ(α)

|α|2s

4
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Show that this is identically 0 unless ` is divisible by 4. Prove that L(s, χ`) has an analytic continuation
and functional equation and has the integral representation

π−(s+
|`|
2 ) Γ

(
s+
|`|
2

)
L(s, χ) =

∫ ∞
0

ys+
|`|
2 Θ`(y)

dy

y
(for Re(s) > 1)

As with the theta functions in the previous, the change of variables by multiplying m ± in by i merely
permutes the summands, but multiplies the whole sum by i`, so either the sum is 0 or i` =. So take ` ∈ 4Z.
Also, the case ` = 0 was treated earlier, so take ` 6= 0.

As with Riemann’s zeta and other examples, these L-functions are Mellin transforms of the theta functions,
once the normalizations are correctly determined. In the case ` > 0,∫ ∞

0

ys+
`
2 ·Θ`(y)

dy

y
=

1

4

∑
06=α

α` ·
∫ ∞

0

ys+
`
2 · e−πy|α|

2 dy

y
=

1

4

∑
06=α

α` ·
∫ ∞

0

ys+
`
2 · e−πy|α|

2 dy

y

=
π−s

4

∑
06=α

α`

|α|2s+`
·
∫ ∞

0

ys+
`
2 · e−y dy

y
= π−(s+ `

2 )Γ(s+
`

2
) · 1

4

∑
06=α

α`

|α|2s+`

= π−(s+ `
2 )Γ(s+

`

2
) · 1

4

∑
0 6=α

α`

|α|`
· 1

|α|2s
= π−(s+ `

2 )Γ(s+
`

2
)L(s, χ`)

A parallel computation works for ` < 0. Then break the integral into two pieces, from 0 to 1 and then 1 to
∞. The integral from 1 to ∞ converges nicely for all s ∈ C, so gives an entire function. The integral from 0
to 1 is converted to one from 1 to ∞ by the change of variables y → 1/y and using the functional equation
of Θ`: ∫ 1

0

ys+
|`|
2 Θ`(y)

dy

y
=

∫ ∞
1

y−(s+
|`|
2 ) Θ`(1/y)

dy

y
=

∫ ∞
1

y−(s+
|`|
2 ) y|`|+1Θ`(y)

dy

y

=

∫ ∞
1

y1−s+ |`|2 ) Θ`(y)
dy

y

Thus,

π−(s+
|`|
2 )Γ(s+

|`|
2

)L(s, χ`) =

∫ ∞
1

(ys+
|`|
2 + y1−s+ |`|2 )) Θ`(y)

dy

y

The right-hand side converges very well, so is entire. ///

[10.10] With χ`(α) = (α/|α|)`, and the L-functions L(s, χ) as in the previous example, express L(4, χ−8)
as a polynomial in L(2, χ−4).

The specific arguments make these L-function values be essentially the Eisenstein series attached to the
lattice of Gaussian integers:

L(k, χ−2k) =
1

4

∑
06=λ∈Z[i]

(λ/|λ|)−2k

|λ|2k
=

1

4

∑
0 6=λ∈Z[i]

1

λ2k
=

1

4
· E2k(Λ)

One charming way to compare E4(Λ) and E8(Λ) is by using the rigid behavior of modular forms, which
proves that up to constants there is a unique holomorphic elliptic modular form of weight 8 (for SL2(Z)).
Certainly E8 is such, and E2

4 is, also. Thus, E8 is a constant multiple of E2
4 . With lattice Λ = Zz + Z, in

this normalization Eisenstein series have Fourier expansions

E2k(z) = 2ζ(2k) +
(2πi)2k

(2k − 1)!

∑
n≥1

σ2k−1(n) e2πinz

5
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Thus, making the leading coefficient 1, ( E4

2ζ(4)

)2

=
E8

2ζ(8)

so

E8 = E2
4 ·

ζ(8)

ζ(4)2

Note that the constant is in fact rational. ///

[10.11] Show how to achieve the effect of replacing a quartic by a cubic in an elliptic integral: exhibit a
change of variables so that ∫ b

a

dx√
x4 − 1

=

∫ B

A

dy√
4y3 + 6y2 + 4y + 1

The trick is to use a linear fractional transformation to move one of the zeros of the quartic to ∞. For

example, g =

(
1 0
−1 1

)
sends 1 to ∞. Replacing x by g · y gives

∫ d
(

y
−y+1

)√(
y

−y+1

)4 − 1
=

∫ 1
(−y+1)2 dy√(

y
−y+1

)4 − 1
=

∫
dy√

y4 − (−y + 1)4

Replace y further by y + 1, to obtain∫
dy√

(y + 1)4 − y4
=

∫
dy√

4y3 + 6y2 + 4y + 1

as desired. ///

[10.12] Fix a lattice L. Express

f(z) =
1

z4
+
∑

06=λ∈L

1

(z − λ)4

in terms of ℘(z) and ℘′(z).

This function is even, so we anticipate it is expressible in terms of ℘(z). To obtain the expression, we try
to cancel the poles, leaving an entire, doubly-periodic functions, which must be constant, by Liouville. The
Laurent expansions of f and ℘ at 0 are of the forms

f(z) =
1

z4
+ a+ bz2 + . . . ℘(z) =

1

z2
+Bz2 + . . .

since the convergence trick for ℘(z) makes the constant 0. In the proof of the Weierstraß equation, one
discovers that B is essentially an Eisenstein series

E2k(Λ) =
∑

06=λ∈Λ

1

λ2k

Precisely, B = 3E4. Similarly,

a =
(
f(z)− 1

z4

)∣∣∣
z=0

= E4

Thus,

℘(z)2 =
1

z4
+ 2B +O(z2)

6
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so

f(z)− ℘(z)2 = (a− 2B) +O(z2)

Thus,

f(z)− ℘(z)2 = a− 2B +O(z2)

and by Liouville

f(z)− ℘(z)2 = a− 2B = E4 − 6E4 = −5E4

[10.13] Express ℘(2z) in terms of ℘(z).

Let ω1, ω2 be a basis for the lattice Λ. Since ℘(2z) has double poles at Λ/2, with residues 1/4, ℘(2z)− 1
4℘(z)

has double poles exactly at ω1

2 + Λ, ω2

2 + Λ, and ω1+ω2

2 + Λ.

Let a be any one of ω1/2, ω2/2, or (ω1 + ω2)/2. Since ℘(z) − ℘(a) is still even, and has a zero at z = a,
this is a double zero. Since the number of poles is equal to the number of zeros, and ℘(z) has a double pole,
there are no other zeros of ℘(z)− ℘(a). Thus,

(
℘(2z)− 1

4
℘(z)

)
·
(
(℘(z)− ℘(

ω1

2
))(℘(z)− ℘(

ω2

2
))(℘(z)− ℘(

ω1 + ω2

2
))
)

is an even function that has poles only on the lattice.

Again, the Laurent expansion of ℘(z) is the power series of ℘(z)− 1/z2 plus 1/z2, and the coefficients of the
power series can be computed via derivatives, giving

1

z2
+ 3E4z

2 + 5E6z
4 + 7E8z

6 + . . .

Thus,

℘(2z)− 1

4
℘(z) = 3E4(22 − 1)z2 + 5E6(23 − 1)z4 + 7E8(28 − 1)z6 + . . .

Thus, the (at least) double zero partly cancels the order-six pole, and the order of pole of the adjusted
function is at most 4. Via Liouville’s theorem, it is inevitably a polynomial in ℘(z), of degree at most 2:

(
℘(2z)− 1

4
℘(z)

)
·
(
(℘(z)− ℘(

ω1

2
))(℘(z)− ℘(

ω2

2
))(℘(z)− ℘(

ω1 + ω2

2
))
)

= A℘(z)2 +B℘(z) + C

This leaves 3 constants A,B,C to be determined. The leading 1/z4 coefficient of the Laurent expansion is
the z2 coefficient of ℘(2z)− ℘(z)/4, namely, 9E4. This is the constant A, so

(
℘(2z)− 1

4
℘(z)

)
·
(
(℘(z)− ℘(

ω1

2
))(℘(z)− ℘(

ω2

2
))(℘(z)− ℘(

ω1 + ω2

2
))
)
− 9E4℘(z)2 = B℘(z) + C

Evaluating the equation at a zero zo of ℘(z) gives

−℘(2zo) · ℘(
ω1

2
) · ℘(

ω2

2
) · ℘(

ω1 + ω2

2
) = C

If ℘(2zo) has a pole at z = zo, then zo is among the 2-division-point values ω1/2, ω2/2, (ω1 +ω2)/2, and this
evaluation requires a little more effort (which we do not exert here).

To determine B, we could take a derivative of the equation and evaluate anywhere ℘′(z) 6= 0, ...

If we cared more, we could pursue this or various other possibilities, such as multiplying out the Laurent
expansions at 0 and comparing terms. ///
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[10.14] Show that

θ(z) =
∑
v∈Z8

eπi|v|
2·z (with z ∈ H)

is an elliptic modular form of weight 4 for the congruence subgroup Γθ.

We need to use the fact that the subgroup Γθ is generated by z → z + 2 and z → −1/z. The invariance of
θ(z) under z → z + 2 is clear, since each term is unchanged. Taking z = iy with y > 0, Poisson summation
proves θ(iy) = 1

(iy)4 θ(i/y). By the identity principle, θ(−1/z) = z4 · θ(z), which is the correct behavior for

a weight-four modular form. ///
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