(March 31, 2015)

Complex analysis examples discussion 10

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

This document is

http://www.math.umn.edu/~garrett/m/complex/examples_2014-15/cx_discussion_10.pdf]

If you want feedback from me on your treatment of these examples, please get your work to me by Friday, Mar 27, preferably as a PDF emailed to me.

[10.1] Show that there is a well-defined, holomorphic function $1/\sqrt{1+z^4}$ on the region |z| > 1. Show that $\int_{\gamma} \frac{dz}{\sqrt{1+z^4}} = 0$, where γ traces out |z| = 2.

There is a function $1/\sqrt{1+z^4\pm i}$ well-defined on |z| > 1, because

$$\frac{1}{\sqrt{1+z^4}} = \frac{1}{\sqrt{z^4(1+\frac{1}{z^4})}} = \frac{1}{z^2} \cdot \frac{1}{\sqrt{1+\frac{1}{z^4}}}$$

For $|1/z^4| < 1$, the quantity $1 + \frac{1}{z^4}$ stays in the right half-plane, so has a holomorphic square root throughout |z| > 1. The Laurent expansion of the original function is then

$$\frac{1}{\sqrt{1+z^4}} = \frac{1}{z^2} \cdot \frac{1}{\sqrt{1+\frac{1}{z^4}}} = \frac{1}{z^2} \cdot (1+\frac{1}{z^4})^{-\frac{1}{2}} = \frac{1}{z^2} \cdot \left(1-\frac{1}{2}\frac{1}{z^4}+\dots\right)$$

By Cauchy's theorem, the path integral of z^n around |z| = 2 is 0 except for n = -1, in which case it is $2\pi i$. But there is no 1/z term in that Laurent expansion. ///

[10.2] Let γ be a simple closed path counter-clockwise encircling 0, 2, and not enclosing -2. Let δ be a simple closed path counter-clockwise encircling -2, 0, and not enclosing 2. Show that there is a holomorphic function $1/\sqrt{z(z^2-4)}$ on the annulus 1 < |z-1| < 3, and a holomorphic function $1/\sqrt{z(z^2-4)}$ on the annulus 1 < |z-1| < 3, and a holomorphic function $1/\sqrt{z(z^2-4)}$ on the annulus 1 < |z+1| < 3. Show that the two periods

$$\int_{\gamma} \frac{dz}{\sqrt{z(z^2 - 4)}} \qquad \qquad \int_{\delta} \frac{dz}{\sqrt{z(z^2 - 4)}}$$

are linearly independent over \mathbb{R} .

In fact, one is purely imaginary and the other is purely real. To show holomorphy in 1 < |z - 1| < 3 and evaluate the integral around γ , we determine (to some degree!) a Laurent expansion in that annulus. First,

$$z(z^{2}-4) = ((z-1)+1)((z-1)-1)((z-1)+3) = 3(z-1)^{2} \cdot \left(1+\frac{1}{z-1}\right)\left(1-\frac{1}{z-1}\right)\left(1+\frac{z-1}{3}\right)$$

Thus, the square root of the reciprocal is

$$\frac{1}{\sqrt{3}(z-1)} \cdot \left(1 + \frac{1}{z-1}\right)^{-\frac{1}{2}} \left(1 - \frac{1}{z-1}\right)^{-\frac{1}{2}} \left(1 + \frac{z-1}{3}\right)^{-\frac{1}{2}}$$

and although we cannot easily determine the coefficient of $(z-1)^{-1}$ in elementary terms, it is *real*, so the integral gives $2\pi i$ times a real number.

Similarly, to obtain a Laurent expansion in the annulus 1 < |z+1| < 3,

$$z(z^{2}-4) = ((z+1)-1)((z+1)+1)((z+1)-3) = -3(z+1)^{2} \cdot \left(1-\frac{1}{z+1}\right)\left(1+\frac{1}{z+1}\right)\left(1-\frac{z+1}{3}\right)$$

Note the sign! Taking a square root will give a Laurent expansion with *purely imaginary* coefficients, so the integral gives $2\pi i$ times a purely imaginary number, thus, a real number.

How to check that these integrals are non-zero? Keeping in mind that we do not expect to be able to evaluate them in more elementary terms, nevertheless we can hope to convert them to forms which are non-vanishing for essentially elementary reasons. One approach is to deform the given contours to be *Hankel/keyhole* contours, as follows. Because the denominator is essentially of order $R^{3/2}$ for large R = |z + 1|, and of order $r^{\frac{1}{2}}$ for small r = |z + 1|, the path enclosing -2, 0 (and not enclosing +2) can be deformed to an integral along a keyhole contour H^{ε} from +2 to $+\infty$ with a small circle of radius $\varepsilon > 0$ about 2. Recall that for sufficiently small $\varepsilon > 0$ the value of the integral is independent of ε . To match the outcome of the Laurent expansion, the integrand $1/\sqrt{z(z^2-4)}$ is required to take a purely imaginary value when the path crosses the real interval (1, 2) at $2 - \varepsilon$. Thus, for continuity, the integrand is *real* on $(2, +\infty)$, and without loss of generality *non-negative*. The integral over the Hankel contour is

$$\int_{H_{\varepsilon}} \frac{dz}{\sqrt{z(z^2 - 4)}} = \frac{1}{1 - e^{\pi i}} \int_{2}^{\infty} \frac{dt}{\sqrt{t(t^2 - 4)}} = \frac{1}{2} \cdot \int_{2}^{\infty} \frac{dt}{\sqrt{t(t^2 - 4)}} > 0$$

A similar argument applies to prove that the other *period* is non-zero. Thus, since one is purely imaginary and the other purely real, they are linearly independent over \mathbb{R} .

[10.3] Show that for irrational $\alpha \in \mathbb{R}$, the set $\{m + n\alpha : m, n \in \mathbb{Z}\}$ is dense in \mathbb{R} .

(Kronecker) Let Γ be the topological closure of $G = \mathbb{Z} + \mathbb{Z}\alpha$ in \mathbb{R} . Suppose for a moment that we know the classification of all topologically-closed subgroups of \mathbb{R} : either $\{0\}$, \mathbb{R} , or of the form $\mathbb{Z} \cdot \beta$ for some $\beta \in \mathbb{R}$. The first case cannot occur for G. If the last case occurs, then there are integers k, ℓ such that $k \cdot \beta = 1$ and $\ell \cdot \beta = \alpha$. But then $\alpha = \ell/k \in \mathbb{Q}$, contradiction.

To prove the classification, for $\Gamma \neq \{0\}$, closed under additive inverses, Γ contains *positive* elements. In the case that there is a *least* positive element μ , claim that $\Gamma = \mathbb{Z} \cdot \mu$. Indeed, for $\gamma \in \Gamma$, by the archimedean property of \mathbb{R} there is $n \in \mathbb{Z}$ such that $n\mu \leq \gamma < (n+1)\mu$. Necessarily $n\mu = \gamma$, or else $0 < \gamma - n\mu < \mu$, contradicting the minimality.

In the case that there is *not* least positive μ , let $\mu_1 > \mu_2 > \ldots > 0$ be an infinite descending sequence of positive elements of Γ . The inf γ_o is in Γ , since Γ is topologically closed. Replace μ_n by $\mu_n - \gamma_o$ to be able to assume that $\mu_n \to 0$. Again by archimedean-ness, $\mathbb{Z} \cdot \mu_n$ contains elements within μ_n of every real number. Since $\mu_n \to 0$, for every $\varepsilon > 0$ Γ contains elements within ε of every real number. By closed-ness, $\Gamma = \mathbb{R}$.

[10.4] Let v_1, \ldots, v_n be linearly independent vectors in \mathbb{R}^n , and $\Lambda = \mathbb{Z}v_1 + \ldots + \mathbb{Z}v_n$ the lattice generated by them. Let \mathbb{R}^n have its usual inner product and associated metric. For r > 0 let B_r be the ball of radius 0 centered at $0 \in \mathbb{R}^n$. Show that for small-enough r > 0 we have $B_r \cap \Lambda = \{0\}$.

Let A be the invertible n-by-n real matrix so that $Av_i = e_i$, where $\{e_i\}$ is the standard basis of \mathbb{R}^n . The map $A : \mathbb{R}^n \to \mathbb{R}^n$ by $v \to Av$ is continuous, and has continuous inverse given by multiplication by A^{-1} . Thus, there is a small-enough neighborhood U of $0 \in \mathbb{R}^n$ such that the image AU is contained in the ball $B_{\frac{1}{2}}$ of radius $\frac{1}{2}$ centered at 0. Certainly $B_{\frac{1}{2}} \cap \mathbb{Z}^n = \{0\}$. Then

$$U \cap \Lambda \subset A^{-1}(B_{\frac{1}{2}} \cap \mathbb{Z}^n) = A^{-1}\{0\} = \{0\}$$

Certainly U contains some ball at 0.

[10.5] Let Λ be a *lattice* in \mathbb{R}^n , that is, the \mathbb{Z} -module generated by *n* vectors linearly independent over \mathbb{R} . Prove that

$$\sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^s}$$

///

is absolutely convergent for $\operatorname{Re}(s) > n$, where $|\cdot|$ is the usual *length* in \mathbb{R}^n . (Do not invoke any non-existent *integral tests* in several variables, despite the fact that the idea of such gives a good heuristic.)

Use volume to give a reasonable upper bound on the number of lattice points in shells $\ell \leq |x| \leq \ell + 1$. Namely, there is 0 < r < 1 so that balls of radius r centered at lattice points do not touch each other. If a lattice point λ is in the shell $\ell \leq |x| \leq \ell + 1$, then the ball or radius r around is is inside the thickened shell $\ell - r \leq |x| \leq \ell + r$, which is inside the shell $\ell - 1 \leq |x| \leq \ell + 1$. The latter has volume $C \cdot ((\ell + 1)^n - (\ell - 1)^n)$ for a constant C depending on n. The total volume of all the balls of radius r around lattice points is at most the volume of the thickened shell. Thus, the number of lattice points inside that shell has a good upper bound:

$$\# \text{ lattice points in } \{x \in \mathbb{R}^n : \ell \le |x \le \ell+1\} \le \frac{C \cdot ((\ell+1)^n - (\ell-1)^n}{C \cdot r^n} \le C' \cdot \ell^{n-1} \qquad (\text{for } \ell > 1)$$

for some constant C'. Similarly, for any radius R, the sum over $|\lambda| < R$ is *finite*: for such lattice points, the balls of radius r around them are disjoint, and all lie inside the sphere of radius R + r at 0, which has finite volume. Thus, to prove convergence, we can drop all $\lambda \in \Lambda$ with $|\lambda| \leq R$. Thus, for real s > 0 and R = 3, we can bound the lattice-point sum by a one-dimensional sum:

$$\sum_{\lambda \in \Lambda, \ |\lambda| \ge 3} \frac{1}{|\lambda|^s} = \sum_{\ell=3}^{\infty} \sum_{\ell-1 \le |\lambda| < \ell+1} \frac{1}{|\lambda|^s} \le \sum_{\ell=3}^{\infty} \sum_{\ell-1 \le |\lambda| < \ell+1} \frac{1}{(\ell-1)^s}$$
$$\le C' \cdot \sum_{\ell=3}^{\infty} \ell^{n-1} \frac{1}{(\ell-1)^s} = C' \cdot \sum_{\ell=2}^{\infty} (\ell+1)^{n-1} \frac{1}{\ell^s} \le C' \cdot 2^{n-1} \sum_{\ell=2}^{\infty} \ell^{n-1} \frac{1}{\ell^s}$$

The usual one-dimensional integral test gives convergence of the latter for s - (n-1) > 1, that is, for s > n.

[10.6] Recall that we need finite growth order $|f(z)| \ll e^{|z|^N}$ as $|z| \to +\infty$ in a strip $a \leq \operatorname{Re}(z) \leq b$, for some N, before we can invoke the Phragmén-Lindelöf theorem. Use the integral representation of $\zeta(s)$ via $\theta(y)$, and properties of $\Gamma(s)$, to show that it has finite order of growth in $-1 \leq \operatorname{Re}(s) \leq 2$.

The integral representation

$$\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\cdot\zeta(s) = \int_{1}^{\infty} (y^{s/2} + y^{\frac{1-s}{2}})\frac{\theta(y) - 1}{2} \frac{dy}{y} + \frac{1}{s-1} - \frac{1}{s} \qquad (\text{with } \theta(y) = \sum_{n \in \mathbb{Z}} e^{-\pi n^{2}y})$$

converges absolutely for s away from 0, 1. Thus, we can present $s(1-s) \cdot \zeta(s)$ in a way that makes sense for all $s \in \mathbb{C}$:

$$\begin{split} s(1-s)\cdot\zeta(s) \ &= \ s(1-s)\cdot\frac{\pi^{\frac{s}{2}}}{\Gamma(\frac{s}{2})}\cdot\Big(\int_{1}^{\infty}(y^{s/2}+y^{\frac{1-s}{2}})\frac{\theta(y)-1}{2}\,\frac{dy}{y}+\frac{1}{s-1}-\frac{1}{s}\Big)\\ &= \ \frac{\pi^{\frac{s}{2}}}{\Gamma(\frac{s}{2})}\cdot\Big(s(1-s)\int_{1}^{\infty}(y^{s/2}+y^{\frac{1-s}{2}})\frac{\theta(y)-1}{2}\,\frac{dy}{y}-s-(1-s)\Big) \end{split}$$

The function $s \to \pi^{s/2}$ visibly has growth-order 1. Stirling's asymptotic shows that in $\operatorname{Re}(s) \ge \frac{1}{2}$ the function $s \to 1/\Gamma(s)$ has growth order 1, and the reflection relation $1/\Gamma(1-s) = \frac{\sin \pi s}{\pi \Gamma(s)}$ yields the growth-order estimate in $\operatorname{Re}(s) \le \frac{1}{2}$. The integral is *bounded* in vertical strips of finite width, and the polynomials s and s-1 have growth order 0. Since the product and/or sum of functions of growth order $\alpha > 0$ is again such a function, this proves that $s(1-s) \cdot \zeta(s)$ has growth order 1. (Phragmén-Lindelöf then gives a sharper assertion.)

[10.7] Show that $f(x,y) = (x \pm iy)^{\ell} e^{-\pi(x^2+y^2)}$ is multiplied by $i^{-\ell}$ by Fourier transform

$$\widehat{f}(\xi,\eta) = \int_{\mathbb{R}^2} e^{-2\pi i (\xi x + \eta y)} f(x,y) \, dx \, dy$$

Hint: rewrite this in terms of z = x + iy and \overline{z} , and another complex variable $w = \xi + i\eta$ and \overline{w} , and look for a chance to differentiate under the integral defining the Fourier transform.

Following the hint, and taking the plus sign, the Fourier transform is

$$\begin{split} \widehat{f}(w,\overline{w}) &= \int_{\mathbb{R}^2} e^{-\pi i (z\overline{w} + \overline{z}w)} z^{\ell} e^{-\pi z\overline{z}} \, dx \, dy \, = \, \frac{1}{(-\pi i)^{\ell}} \int_{\mathbb{R}^2} \left(\frac{\partial}{\partial \overline{w}}\right)^{\ell} e^{-\pi i (z\overline{w} + \overline{z}w)} \, e^{-\pi z\overline{z}} \, dx \, dy \\ &= \, \frac{1}{(-\pi i)^{\ell}} \cdot \left(\frac{\partial}{\partial \overline{w}}\right)^{\ell} \int_{\mathbb{R}^2} e^{-\pi i (z\overline{w} + \overline{z}w)} \, e^{-\pi z\overline{z}} \, dx \, dy \, = \, \frac{1}{(-\pi i)^{\ell}} \left(\frac{\partial}{\partial \overline{w}}\right)^{\ell} e^{-\pi w\overline{w}} \end{split}$$

since we already know that these pure Gaussians map to themselves under Fourier transform. Then this is

$$\frac{1}{(-\pi i)^{\ell}}(-\pi w)^{\ell} \cdot e^{-\pi w \overline{w}} = i^{-\ell} \cdot w^{\ell} e^{-\pi w \overline{w}}$$

as claimed. The argument for the minus-sign case is identical.

[10.8] Define a harmonic theta function $\Theta_{\ell}(y)$ by

$$\Theta_{\ell}(y) = \begin{cases} \frac{1}{4} \sum_{\substack{(0,0) \neq (m,n) \in \mathbb{Z}^2 \\ \frac{1}{4} \sum_{\substack{(0,0) \neq (m,n) \in \mathbb{Z}^2 \\ (0,0) \neq (m,n) \in \mathbb{Z}^2 \end{cases}}} (m-in)^{|\ell|} e^{-\pi y (m^2+n^2)} & \text{(for } \ell < 0) \end{cases}$$

Show that this is identically 0 unless ℓ is divisible by 4, and prove the *functional equation*

$$\Theta_{\ell}(1/y) = y^{\ell+1} \cdot \Theta_{\ell}(y)$$

Replacing $m \pm in$ by $i \cdot (m \pm in)$ is a bijection of non-zero Gaussian integers to themselves, so cannot alter the sum. Yet a factor of i^{ℓ} comes out, so the whole sum is multiplied by i^{ℓ} . Thus, either the sum is 0, or $i^{\ell} = 1.$

In \mathbb{R}^2 , by changing variables in the defining integral, $f(\sqrt{y} \cdot v) = \frac{1}{y} \widehat{f}(\frac{1}{y} \cdot v)$. Let $f(u, v) = (u \pm iv) e^{-\pi(u^2 + v^2)}$. Note that the term m = n = 0 in the sum defining the theta function vanishes for $\ell \neq 0$, and we consider only that situation. Also, take $\ell \in 4\mathbb{Z}$. The previous example's computation of the Fourier transform of $(u \pm iv) e^{-\pi(u^2+v^2)}$, Poisson summation, give

$$\begin{split} \Theta(y) &= \sum_{m,n\in\mathbb{Z}} (m\pm in)^{\ell} e^{-\pi y(m^{2}+n^{2})} = y^{-\ell/2} \sum_{m,n\in\mathbb{Z}} (\sqrt{y}(m\pm in))^{\ell} e^{-\pi y(m^{2}+n^{2})} = y^{-\ell/2} \sum_{m,n\in\mathbb{Z}} f(\sqrt{y}\cdot(m,n)) \\ &= y^{-\ell/2} \frac{1}{y} \sum_{m,n\in\mathbb{Z}} \widehat{f}(\frac{1}{\sqrt{y}}\cdot(m,n)) = y^{-\ell/2} \frac{1}{y} i^{-\ell} \sum_{m,n\in\mathbb{Z}} (\frac{1}{\sqrt{y}}(m\pm in))^{\ell} e^{-\pi y(m^{2}+n^{2})} \\ &= y^{-\ell} \frac{1}{y} \sum_{m,n\in\mathbb{Z}} (m\pm in)^{\ell} e^{-\pi y(m^{2}+n^{2})} = \frac{1}{y^{\ell+1}} \Theta(\frac{1}{y}) \\ \text{as claimed.} \end{split}$$

as claimed.

[10.9] Let $\chi(\alpha) = (\alpha/|\alpha|)^{\ell}$ for $\alpha \in \mathbb{C}^{\times}$. The associated Hecke L-function on the Gaussian integers $\mathbb{Z}[i]$ is

$$L(s,\chi) = \frac{1}{\#\mathbb{Z}[i]^{\times}} \sum_{0 \neq \alpha \in \mathbb{Z}[i]} \frac{\chi(\alpha)}{|\alpha|^{2s}} = \frac{1}{4} \sum_{0 \neq \alpha \in \mathbb{Z}[i]} \frac{\chi(\alpha)}{|\alpha|^{2s}}$$

///

Show that this is identically 0 unless ℓ is divisible by 4. Prove that $L(s, \chi_{\ell})$ has an analytic continuation and functional equation and has the integral representation

$$\pi^{-(s+\frac{|\ell|}{2})} \Gamma\left(s+\frac{|\ell|}{2}\right) L(s,\chi) = \int_0^\infty y^{s+\frac{|\ell|}{2}} \Theta_\ell(y) \frac{dy}{y} \qquad \text{(for } \operatorname{Re}(s) > 1)$$

As with the theta functions in the previous, the change of variables by multiplying $m \pm in$ by *i* merely permutes the summands, but multiplies the whole sum by i^{ℓ} , so either the sum is 0 or $i^{\ell} =$. So take $\ell \in 4\mathbb{Z}$. Also, the case $\ell = 0$ was treated earlier, so take $\ell \neq 0$.

As with Riemann's zeta and other examples, these L-functions are Mellin transforms of the theta functions, once the normalizations are correctly determined. In the case $\ell > 0$,

$$\begin{split} \int_{0}^{\infty} y^{s+\frac{\ell}{2}} \cdot \Theta_{\ell}(y) \frac{dy}{y} &= \frac{1}{4} \sum_{0 \neq \alpha} \alpha^{\ell} \cdot \int_{0}^{\infty} y^{s+\frac{\ell}{2}} \cdot e^{-\pi y |\alpha|^{2}} \frac{dy}{y} = \frac{1}{4} \sum_{0 \neq \alpha} \alpha^{\ell} \cdot \int_{0}^{\infty} y^{s+\frac{\ell}{2}} \cdot e^{-\pi y |\alpha|^{2}} \frac{dy}{y} \\ &= \frac{\pi^{-s}}{4} \sum_{0 \neq \alpha} \frac{\alpha^{\ell}}{|\alpha|^{2s+\ell}} \cdot \int_{0}^{\infty} y^{s+\frac{\ell}{2}} \cdot e^{-y} \frac{dy}{y} = \pi^{-(s+\frac{\ell}{2})} \Gamma(s+\frac{\ell}{2}) \cdot \frac{1}{4} \sum_{0 \neq \alpha} \frac{\alpha^{\ell}}{|\alpha|^{2s+\ell}} \\ &= \pi^{-(s+\frac{\ell}{2})} \Gamma(s+\frac{\ell}{2}) \cdot \frac{1}{4} \sum_{0 \neq \alpha} \frac{\alpha^{\ell}}{|\alpha|^{\ell}} \cdot \frac{1}{|\alpha|^{2s}} = \pi^{-(s+\frac{\ell}{2})} \Gamma(s+\frac{\ell}{2}) L(s,\chi_{\ell}) \end{split}$$

A parallel computation works for $\ell < 0$. Then break the integral into two pieces, from 0 to 1 and then 1 to ∞ . The integral from 1 to ∞ converges nicely for all $s \in \mathbb{C}$, so gives an entire function. The integral from 0 to 1 is converted to one from 1 to ∞ by the change of variables $y \to 1/y$ and using the functional equation of Θ_{ℓ} :

$$\begin{split} \int_0^1 y^{s+\frac{|\ell|}{2}} \Theta_\ell(y) \frac{dy}{y} &= \int_1^\infty y^{-(s+\frac{|\ell|}{2})} \Theta_\ell(1/y) \frac{dy}{y} = \int_1^\infty y^{-(s+\frac{|\ell|}{2})} y^{|\ell|+1} \Theta_\ell(y) \frac{dy}{y} \\ &= \int_1^\infty y^{1-s+\frac{|\ell|}{2})} \Theta_\ell(y) \frac{dy}{y} \end{split}$$

Thus,

$$\pi^{-(s+\frac{|\ell|}{2})}\Gamma(s+\frac{|\ell|}{2})L(s,\chi_{\ell}) = \int_{1}^{\infty} (y^{s+\frac{|\ell|}{2}} + y^{1-s+\frac{|\ell|}{2}})\Theta_{\ell}(y)\frac{dy}{y}$$

///

The right-hand side converges very well, so is entire.

[10.10] With $\chi_{\ell}(\alpha) = (\alpha/|\alpha|)^{\ell}$, and the *L*-functions $L(s,\chi)$ as in the previous example, express $L(4,\chi_{-8})$ as a polynomial in $L(2,\chi_{-4})$.

The specific arguments make these L-function values be essentially the *Eisenstein series* attached to the lattice of Gaussian integers:

$$L(k,\chi_{-2k}) = \frac{1}{4} \sum_{0 \neq \lambda \in \mathbb{Z}[i]} \frac{(\lambda/|\lambda|)^{-2k}}{|\lambda|^{2k}} = \frac{1}{4} \sum_{0 \neq \lambda \in \mathbb{Z}[i]} \frac{1}{\lambda^{2k}} = \frac{1}{4} \cdot E_{2k}(\Lambda)$$

One charming way to compare $E_4(\Lambda)$ and $E_8(\Lambda)$ is by using the rigid behavior of modular forms, which proves that up to constants there is a unique holomorphic elliptic modular form of weight 8 (for $SL_2(\mathbb{Z})$). Certainly E_8 is such, and E_4^2 is, also. Thus, E_8 is a constant multiple of E_4^2 . With lattice $\Lambda = \mathbb{Z}z + \mathbb{Z}$, in this normalization Eisenstein series have Fourier expansions

$$E_{2k}(z) = 2\zeta(2k) + \frac{(2\pi i)^{2k}}{(2k-1)!} \sum_{n\geq 1} \sigma_{2k-1}(n) e^{2\pi i n z}$$

Thus, making the leading coefficient 1,

$$\frac{E_4}{2\zeta(4)}\Big)^2 = \frac{E_8}{2\zeta(8)}$$
$$E_8 = E_4^2 \cdot \frac{\zeta(8)}{\zeta(4)^2}$$

 \mathbf{SO}

Note that the constant is in fact *rational*.

[10.11] Show how to achieve the effect of replacing a *quartic* by a *cubic* in an elliptic integral: exhibit a change of variables so that

$$\int_{a}^{b} \frac{dx}{\sqrt{x^{4} - 1}} = \int_{A}^{B} \frac{dy}{\sqrt{4y^{3} + 6y^{2} + 4y + 1}}$$

The trick is to use a linear fractional transformation to move one of the zeros of the quartic to ∞ . For example, $g = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ sends 1 to ∞ . Replacing x by $g \cdot y$ gives

$$\int \frac{d\left(\frac{y}{-y+1}\right)}{\sqrt{\left(\frac{y}{-y+1}\right)^4 - 1}} = \int \frac{\frac{1}{(-y+1)^2} \, dy}{\sqrt{\left(\frac{y}{-y+1}\right)^4 - 1}} = \int \frac{dy}{\sqrt{y^4 - (-y+1)^4}}$$

Replace y further by y + 1, to obtain

$$\int \frac{dy}{\sqrt{(y+1)^4 - y^4}} = \int \frac{dy}{\sqrt{4y^3 + 6y^2 + 4y + 1}}$$

as desired.

[10.12] Fix a lattice L. Express

$$f(z) = \frac{1}{z^4} + \sum_{0 \neq \lambda \in L} \frac{1}{(z - \lambda)^4}$$

in terms of $\wp(z)$ and $\wp'(z)$.

This function is *even*, so we anticipate it is expressible in terms of $\wp(z)$. To obtain the expression, we try to cancel the poles, leaving an entire, doubly-periodic functions, which must be constant, by Liouville. The Laurent expansions of f and \wp at 0 are of the forms

$$f(z) = \frac{1}{z^4} + a + bz^2 + \dots$$
 $\wp(z) = \frac{1}{z^2} + Bz^2 + \dots$

since the convergence trick for $\wp(z)$ makes the constant 0. In the proof of the Weierstraß equation, one discovers that B is essentially an Eisenstein series

$$E_{2k}(\Lambda) = \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^{2k}}$$

Precisely, $B = 3E_4$. Similarly,

$$a = \left(f(z) - \frac{1}{z^4}\right)\Big|_{z=0} = E_4$$

Thus,

$$\wp(z)^2 = \frac{1}{z^4} + 2B + O(z^2)$$

///

 \mathbf{SO}

$$f(z) - \wp(z)^2 = (a - 2B) + O(z^2)$$

Thus,

$$f(z) - \wp(z)^2 = a - 2B + O(z^2)$$

and by Liouville

$$f(z) - \wp(z)^2 = a - 2B = E_4 - 6E_4 = -5E_4$$

[10.13] Express $\wp(2z)$ in terms of $\wp(z)$.

Let ω_1, ω_2 be a basis for the lattice Λ . Since $\wp(2z)$ has double poles at $\Lambda/2$, with residues 1/4, $\wp(2z) - \frac{1}{4}\wp(z)$ has double poles exactly at $\frac{\omega_1}{2} + \Lambda$, $\frac{\omega_2}{2} + \Lambda$, and $\frac{\omega_1 + \omega_2}{2} + \Lambda$.

Let a be any one of $\omega_1/2$, $\omega_2/2$, or $(\omega_1 + \omega_2)/2$. Since $\wp(z) - \wp(a)$ is still even, and has a zero at z = a, this is a *double* zero. Since the number of poles is equal to the number of zeros, and $\wp(z)$ has a double pole, there are no other zeros of $\wp(z) - \wp(a)$. Thus,

$$\left(\wp(2z) - \frac{1}{4}\,\wp(z)\right) \cdot \left((\wp(z) - \wp(\frac{\omega_1}{2}))(\wp(z) - \wp(\frac{\omega_2}{2}))(\wp(z) - \wp(\frac{\omega_1 + \omega_2}{2}))\right)$$

is an even function that has poles only on the lattice.

Again, the Laurent expansion of $\wp(z)$ is the power series of $\wp(z) - 1/z^2$ plus $1/z^2$, and the coefficients of the power series can be computed via derivatives, giving

$$\frac{1}{z^2} + 3E_4z^2 + 5E_6z^4 + 7E_8z^6 + \dots$$

Thus,

$$\wp(2z) - \frac{1}{4}\,\wp(z) = 3E_4(2^2 - 1)z^2 + 5E_6(2^3 - 1)z^4 + 7E_8(2^8 - 1)z^6 + \dots$$

Thus, the (at least) double zero partly cancels the order-six pole, and the order of pole of the adjusted function is at most 4. Via Liouville's theorem, it is inevitably a *polynomial* in $\wp(z)$, of degree at most 2:

$$\left(\wp(2z) - \frac{1}{4}\,\wp(z)\right) \cdot \left((\wp(z) - \wp(\frac{\omega_1}{2}))(\wp(z) - \wp(\frac{\omega_2}{2}))(\wp(z) - \wp(\frac{\omega_1 + \omega_2}{2}))\right) = A\wp(z)^2 + B\wp(z) + C$$

This leaves 3 constants A, B, C to be determined. The leading $1/z^4$ coefficient of the Laurent expansion is the z^2 coefficient of $\wp(2z) - \wp(z)/4$, namely, $9E_4$. This is the constant A, so

$$\left(\wp(2z) - \frac{1}{4}\,\wp(z)\right) \cdot \left((\wp(z) - \wp(\frac{\omega_1}{2}))(\wp(z) - \wp(\frac{\omega_2}{2}))(\wp(z) - \wp(\frac{\omega_1 + \omega_2}{2}))\right) - 9E_4\wp(z)^2 = B\wp(z) + C$$

Evaluating the equation at a zero z_o of $\wp(z)$ gives

$$-\wp(2z_o)\cdot\wp(\frac{\omega_1}{2})\cdot\wp(\frac{\omega_2}{2})\cdot\wp(\frac{\omega_1+\omega_2}{2}) = C$$

If $\wp(2z_o)$ has a pole at $z = z_o$, then z_o is among the 2-division-point values $\omega_1/2, \omega_2/2, (\omega_1 + \omega_2)/2$, and this evaluation requires a little more effort (which we do not exert here).

To determine B, we could take a derivative of the equation and evaluate anywhere $\wp'(z) \neq 0, \dots$

If we cared more, we could pursue this or various other possibilities, such as multiplying out the Laurent expansions at 0 and comparing terms. ///

[10.14] Show that

$$\theta(z) = \sum_{v \in \mathbb{Z}^8} e^{\pi i |v|^2 \cdot z} \quad (\text{with } z \in \mathfrak{H})$$

is an elliptic modular form of weight 4 for the congruence subgroup Γ_{θ} .

We need to use the fact that the subgroup Γ_{θ} is generated by $z \to z + 2$ and $z \to -1/z$. The invariance of $\theta(z)$ under $z \to z + 2$ is clear, since each term is unchanged. Taking z = iy with y > 0, Poisson summation proves $\theta(iy) = \frac{1}{(iy)^4} \theta(i/y)$. By the identity principle, $\theta(-1/z) = z^4 \cdot \theta(z)$, which is the correct behavior for a weight-four modular form.