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If you want feedback from me on your treatment of these examples, please get your work to me by Friday,
Mar 27, preferably as a PDF emailed to me.

[10.1] Show that there is a well-defined, holomorphic function 1/v/1+ 2% on the region |z| > 1. Show that
dz

/7 V1422

There is a function 1/4/1 + 2% & ¢ well-defined on |z| > 1, because

= 0, where ~y traces out |z| = 2.
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For |1/z%| < 1, the quantity 1+ Z% stays in the right half-plane, so has a holomorphic square root throughout
|z| > 1. The Laurent expansion of the original function is then

1 _1 1 _1(1+1)_%_1(111+ )
/714—24_22 1+L_22 4 2 24

By Cauchy’s theorem, the path integral of z™ around |z| = 2 is 0 except for n = —1, in which case it is 2mi.
But there is no 1/z term in that Laurent expansion. ///

[10.2] Let v be a simple closed path counter-clockwise encircling 0,2, and not enclosing —2. Let § be a
simple closed path counter-clockwise encircling —2, 0, and not enclosing 2. Show that there is a holomorphic

function 1/4/2(22 —4) on the annulus 1 < |z — 1| < 3, and a holomorphic function 1/4/2(22 —4) on the
annulus 1 < |z + 1| < 3. Show that the two periods

/ dz / dz
v/ 2(22 —4) 5/ 2(22 —4)
are linearly independent over R.

In fact, one is purely imaginary and the other is purely real. To show holomorphy in 1 < |z — 1] < 3 and
evaluate the integral around ~y, we determine (to some degree!) a Laurent expansion in that annulus. First,

W2—4) = (=D +D)((z=1) = 1D)((z—1) +3) = 3(z_1)2.(1+2i1)(1_zi1)(1+251)

Thus, the square root of the reciprocal is

\/g(jl).(lJrzil)_Q(lzil)_2<1+2;1)_2

and although we cannot easily determine the coefficient of (z — 1)~! in elementary terms, it is real, so the
integral gives 2m¢ times a real number.

Similarly, to obtain a Laurent expansion in the annulus 1 < |z + 1| < 3,

A2 =) = ()= DD+ DEHD-3) = =36 +17 (1- =) (1+ 5) (1- 557)
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Note the sign! Taking a square root will give a Laurent expansion with purely imaginary coefficients, so the
integral gives 2mi times a purely imaginary number, thus, a real number.

How to check that these integrals are non-zero? Keeping in mind that we do not expect to be able to evaluate
them in more elementary terms, nevertheless we can hope to convert them to forms which are non-vanishing
for essentially elementary reasons. One approach is to deform the given contours to be Hankel/keyhole
contours, as follows. Because the denominator is essentially of order R*/? for large R = |z + 1|, and of order
r2 for small 7 = |z + 1], the path enclosing —2,0 (and not enclosing +2) can be deformed to an integral
along a keyhole contour H® from +2 to 400 with a small circle of radius € > 0 about 2. Recall that for
sufficiently small € > 0 the value of the integral is independent of . To match the outcome of the Laurent
expansion, the integrand 1/4/z(2%2 — 4) is required to take a purely imaginary value when the path crosses
the real interval (1,2) at 2 — e. Thus, for continuity, the integrand is real on (2, +00), and without loss of
generality non-negative. The integral over the Hankel contour is

/ dz 1 /°° dt _1_/00 dt -
Ho2(Z2—4)  1—em )y JSte2—4) 2 Jo JHEE—4)

A similar argument applies to prove that the other period is non-zero. Thus, since one is purely imaginary
and the other purely real, they are linearly independent over R. ///

[10.3] Show that for irrational @ € R, the set {m +na : m,n € Z} is dense in R.

(Kronecker) Let T be the topological closure of G = Z + Za in R. Suppose for a moment that we know the
classification of all topologically-closed subgroups of R: either {0}, R, or of the form Z - § for some g € R.
The first case cannot occur for G. If the last case occurs, then there are integers k, £ such that k-3 =1 and
¢- B =a. But then a = ¢/k € Q, contradiction.

To prove the classification, for I' # {0}, closed under additive inverses, I" contains positive elements. In the
case that there is a least positive element p, claim that I' = Z - u. Indeed, for v € T', by the archimedean
property of R there is n € Z such that nu < v < (n 4 1)p. Necessarily np = «, or else 0 < v — np < p,
contradicting the minimality.

In the case that there is not least positive p, let 1 > pe > ... > 0 be an infinite descending sequence of
positive elements of I'. The inf 7, is in I, since I' is topologically closed. Replace p,, by p, —7, to be able to
assume that p, — 0. Again by archimedean-ness, Z - y,, contains elements within p,, of every real number.
Since p, — 0, for every € > 0 I' contains elements within € of every real number. By closed-ness, I' = R.

I

[10.4] Let vy, ..., v, be linearly independent vectors in R™, and A = Zvy + ... + Zuv,, the lattice generated
by them. Let R™ have its usual inner product and associated metric. For r > 0 let B, be the ball of radius
0 centered at 0 € R™. Show that for small-enough r > 0 we have B, N A = {0}.

Let A be the invertible n-by-n real matrix so that Av; = e;, where {e;} is the standard basis of R™. The
map A : R® — R™ by v — Av is continuous, and has continuous inverse given by multiplication by A~1.
Thus, there is a small-enough neighborhood U of 0 € R™ such that the image AU is contained in the ball
B of radius 1 centered at 0. Certainly By NZ" ={0}. Then

UNnA c AN (BynZ") = A0} = {0}

Certainly U contains some ball at 0. /]

[10.5] Let A be a lattice in R™, that is, the Z-module generated by n vectors linearly independent over R.
Prove that
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is absolutely convergent for Re(s) > n, where | - | is the usual length in R™. (Do not invoke any non-existent
integral tests in several variables, despite the fact that the idea of such gives a good heuristic.)

Use volume to give a reasonable upper bound on the number of lattice points in shells £ < |z| < ¢ + 1.
Namely, there is 0 < r < 1 so that balls of radius r centered at lattice points do not touch each other. If a
lattice point A is in the shell ¢ < |z| < ¢ + 1, then the ball or radius r around is is inside the thickened shell
¢—r < |z| <+, which is inside the shell £ —1 < |z| < £+ 1. The latter has volume C'- (({+1)" — (£ —1)"
for a constant C' depending on n. The total volume of all the balls of radius r around lattice points is at
most the volume of the thickened shell. Thus, the number of lattice points inside that shell has a good upper
bound:

C-(+1)—(@-1)"
c.rm

for some constant C’. Similarly, for any radius R, the sum over |A| < R is finite: for such lattice points, the

balls of radius r around them are disjoint, and all lie inside the sphere of radius R + r at 0, which has finite

volume. Thus, to prove convergence, we can drop all A € A with |A] < R. Thus, for real s > 0 and R = 3,
we can bound the lattice-point sum by a one-dimensional sum:

1 - 1 - 1
Z RN Z Z BB < Z Z (—1)*

# lattice points in {z e R": { < |z <L+ 1} < < ¢t (for £ > 1)

AEA, |X|>3 =3 [—1<|A\|<b+1 =3 (—1<|A|<b+1
< C/_ign—l 1 _ C/i(g_i_l)n—ll < C/-Qn_l ien—li
- (=3 (€-1) (=2 e - (=2 &

The usual one-dimensional integral test gives convergence of the latter for s — (n — 1) > 1, that is, for s > n.

I

[10.6] Recall that we need finite growth order |f(z)| < el as |z] = 400 in a strip a < Re(z) < b, for
some N, before we can invoke the Phragmén-Lindel6f theorem. Use the integral representation of ((s) via
0(y), and properties of I'(s), to show that it has finite order of growth in —1 < Re(s) < 2.

The integral representation

s e 1. O(y)—1d 11 . s
T 2I’(§)-C(s) :/1 (y*/% +y = )(31)25+31_s (with 0(y) = > ,cze Y)

converges absolutely for s away from 0,1. Thus, we can present s(1 — s) - {(s) in a way that makes sense for
all s € C:

- f e [ U )

The function s — 7%/ visibly has growth-order 1. Stirling’s asymptotic shows that in Re(s) > 1 the function
s — 1/I'(s) has growth order 1, and the reflection relation 1/T'(1—s) = ;112‘(7;; yields the growth-order estimate
in Re(s) < % The integral is bounded in vertical strips of finite width, and the polynomials s and s — 1 have
growth order 0. Since the product and/or sum of functions of growth order @ > 0 is again such a function,

this proves that s(1 — s) - {(s) has growth order 1. (Phragmén-Lindel6f then gives a sharper assertion.)

"

[10.7] Show that f(z,y) = (= + iy)* e~(@*+v") is multiplied by i—¢ by Fourier transform

~

flem = [ e fay) dady

3
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Hint: rewrite this in terms of z = x + iy and Z, and another complex variable w = £ + in and w, and look
for a chance to differentiate under the integral defining the Fourier transform.

Following the hint, and taking the plus sign, the Fourier transform is

P, _ 1 O \¢ S _
f(m@) _ / e—wz(zw+zw) ZZ e~ ™7 dr dy = / ( ) e—ﬂz(zw—i-zw) e~ %% dr dy
R2 (—mi)t ow

— ﬁ (ai?u)f/]Rz i) (TE g g ﬁ (%)ée*”wﬁ

since we already know that these pure Gaussians map to themselves under Fourier transform. Then this is

1 _ _
(_ﬂ_i)g (77””)5 Lo TWW Z.7£ X wl e~ TWUw

as claimed. The argument for the minus-sign case is identical. ///
[10.8] Define a harmonic theta function ©,(y) by

Z (m + in)* e~ my(m*+n) (for £ > 0)
(0,0)#(m,n)eZ?

(m — in)!*! e my(m*+n?) (for £ < 0)
(0,0)#(m,n)eZ?

Ocly) =

il L Ny

Show that this is identically 0 unless ¢ is divisible by 4, and prove the functional equation

Oc(1/y) = ¥y Ou(y)

Replacing m + in by i - (m =+ in) is a bijection of non-zero Gaussian integers to themselves, so cannot alter
the sum. Yet a factor of i comes out, so the whole sum is multiplied by ‘. Thus, either the sum is 0, or
it =1.

In R?, by changing variables in the defining integral, f(,/y-v)" = 1f(7 v). Let f(u,v) = (utiv) e ™ "),
Note that the term m = n = 0 in the sum defining the theta functlon vanishes for £ # 0, and we consider
only that situation. Also, take ¢ € 47Z. The previous example’s computation of the Fourier transform of
(u +iv) e*”(“2+“2), Poisson summation, give

Oy) = > (makin)’ e™ ™) = =2 N7 (fy(matin))f eV = =2 N (g (m,m))

m,neZ m,n€z m,ne’
,Z/Q Z f )) — 7@/2 7[ Z m + ZTL))Z e—ﬂy(m2+n2)
m,n€e” m,n€Z
1 2,2 1 1
—£ N
=y - Z (m £ in)emmm ) = yz+1®(§)
m,nez
as claimed. /]

[10.9] Let x(a) = (a/]a])? for a € C*. The associated Hecke L-function on the Gaussian integers Z[i] is

[ Z X|2s: Z X|25

0#£a€EZli) 0£a€EZL[i]

L(87X) =

4
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Show that this is identically 0 unless ¢ is divisible by 4. Prove that L(s, x¢) has an analytic continuation
and functional equation and has the integral representation

A+ ( £ |) L(s,x) = /000 v+ O4(y) % (for Re(s) > 1)

As with the theta functions in the previous, the change of variables by multiplying m + in by i merely
permutes the summands, but multiplies the whole sum by ¢, so either the sum is 0 or ¢ =. So take ¢ € 47Z.
Also, the case ¢ = 0 was treated earlier, so take ¢ £ 0.

As with Riemann’s zeta and other examples, these L-functions are Mellin transforms of the theta functions,
once the normalizations are correctly determined. In the case £ > 0,

Tt e W = N / th L gmmrlal W _ / +4 oyl By
/0 Y y 42 Yy 42 (1

0#£« 0#a
TS O/ o8} srl _ dy _(s+ )
_ 40;|a|2s+4./0 YTz e y? =7 FS+ Z‘a|25+€
~(s+3) . —(s+%) ¢
I( s+ Z \a|‘3 |a‘25 = 2T(s + 2)L(5»Xl)

A parallel computation works for £ < 0. Then break the integral into two pieces, from 0 to 1 and then 1 to
00. The integral from 1 to oo converges nicely for all s € C, so gives an entire function. The integral from 0
to 1 is converted to one from 1 to co by the change of variables y — 1/y and using the functional equation

Of@g:
1 o [e%)
srldl dy (st dy srldl dy
/y“@e(y)*:/ y(“)@e(l/y)*:/ y~ ) ylltlg, (y) =
0 Yy 1 Yy 1 Yy

il dy
=/ y' +2)@e(y)g

1

Thus,
(s4 18l 14 el el d
e O+ L) = [Tt e ) e 2
1
The right-hand side converges very well, so is entire. ///

[10.10] With x¢(a) = (a/|a|)?, and the L-functions L(s,x) as in the previous example, express L(4, x_s)
as a polynomial in L(2,x_4).

The specific arguments make these L-function values be essentially the FEisenstein series attached to the
lattice of Gaussian integers:

1 (A/|A]) 2k 1 1 1
Hera) =3 3 B =1 X s - g

O0#NEZ[i] O0#NEZ[i]

One charming way to compare E4(A) and Eg(A) is by using the rigid behavior of modular forms, which
proves that up to constants there is a unique holomorphic elliptic modular form of weight 8 (for SL2(Z)).
Certainly Fg is such, and E? is, also. Thus, Eg is a constant multiple of E7. With lattice A = Zz + Z, in
this normalization Eisenstein series have Fourier expansions

(27i)? .
Eai(z) = 2¢(2k) + Qk—l lzagk 1(n) e2min*
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Thus, making the leading coefficient 1,

() = =

@) T A
" ()
_ 2.
BT B gy
Note that the constant is in fact rational. ///

[10.11] Show how to achieve the effect of replacing a quartic by a cubic in an elliptic integral: exhibit a
change of variables so that
dy

/a VvVt —1 _/A Va3 +6y2 +4y +1

The trick is to use a linear fractional transformation to move one of the zeros of the quartic to co. For

example, g = (_11 ?) sends 1 to co. Replacing x by g - y gives

1

/Jﬁ%/<>1/m

—y+1

Replace y further by y + 1, to obtain

| o= - | s
(y+ DT =y VAP + 62 + Ay +1

as desired. /]

[10.12] Fix a lattice L. Express

flz) = = —|—Z

0¢A€L
in terms of p(z) and ©'(2).
This function is even, so we anticipate it is expressible in terms of p(z). To obtain the expression, we try

to cancel the poles, leaving an entire, doubly-periodic functions, which must be constant, by Liouville. The
Laurent expansions of f and g at 0 are of the forms

1 1
f(z):;+a+b22+... p(z):Z—Q+Bz2+...

since the convergence trick for p(z) makes the constant 0. In the proof of the Weierstral equation, one
discovers that B is essentially an Eisenstein series

Eor(A) = Z %

Precisely, B = 3F4. Similarly,

Thus,
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f(z) = p(2)* = (a—2B)+0(z*)

Thus,
flz)— p(z)2 = a—2B+ O(z2)

and by Liouville
f(z) —p(2)> = a—2B = E, —6E, = —5E,

[10.13] Express p(22) in terms of p(z).

Let wy,ws be a basis for the lattice A. Since p(2z) has double poles at A/2, with residues 1/4, p(2z) — 2p(z)
has double poles exactly at %t + A, %> + A, and % + A.

Let a be any one of wy/2, wa/2, or (wy + wz)/2. Since p(z) — p(a) is still even, and has a zero at z = a,
this is a double zero. Since the number of poles is equal to the number of zeros, and p(z) has a double pole,
there are no other zeros of p(z) — p(a). Thus,

w1 + wa

(p(22) — i@(Z)) ((9(2) = o(F)D(p(2) = p(F))(p(2) = p(=5—)))

is an even function that has poles only on the lattice.
Again, the Laurent expansion of p(z) is the power series of p(z) —1/22 plus 1/22, and the coefficients of the
power series can be computed via derivatives, giving

1
; + 3E422 + 5E62’4 + 7E826 + ...

Thus,
1
p(22) = 7 9(2) = 3E4(22 — 1)22 + 5Eg(2° — 1)2* + TEg(28 — 1)25 + ...

Thus, the (at least) double zero partly cancels the order-six pole, and the order of pole of the adjusted
function is at most 4. Via Liouville’s theorem, it is inevitably a polynomial in p(z), of degree at most 2:

w1 + W2

(p(22) = 7 9()) - ((9(2) = oD (=) — 2N ((=) — p(ZE22))) = Ap(z)? + Bolz) + C

This leaves 3 constants A, B, C to be determined. The leading 1/2* coefficient of the Laurent expansion is
the 22 coefficient of p(22) — p(2)/4, namely, 9E,. This is the constant A, so

(0(22) ~ 1 9(2)) - ((92) ~ 6EN((2) — oEDN((2) — (L1 22))) = 9Bup(=)? = Bo(z) +C

Evaluating the equation at a zero z, of p(z) gives

w1

w1 + wo
—9(220) - (5

) o(5) pl—5—) = C

If p(22,) has a pole at z = z,, then z, is among the 2-division-point values wy /2, w2/2, (w1 + w2)/2, and this
evaluation requires a little more effort (which we do not exert here).

To determine B, we could take a derivative of the equation and evaluate anywhere ©'(2) # 0, ...

If we cared more, we could pursue this or various other possibilities, such as multiplying out the Laurent
expansions at 0 and comparing terms. ///
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[10.14] Show that
0(z) = Y emivle (with z € §)

veZsd

is an elliptic modular form of weight 4 for the congruence subgroup I'y.

We need to use the fact that the subgroup I'y is generated by z — z + 2 and z — —1/z. The invariance of
0(z) under z — z + 2 is clear, since each term is unchanged. Taking z = iy with y > 0, Poisson summation
proves 0(iy) = ﬁ 6(i/y). By the identity principle, (—1/z) = 2* - §(z), which is the correct behavior for
a weight-four modular form. ///




