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[11.1] Determine the genus of the curve y? = z° — 1.

This is a hyper-elliptic curve, being of the form y? = square-free polynomial in . That z° — 1 is square-free
in C[z] is clear in at least two ways: one way is to observe that % — 1 has no common factors with its
derivative 52*. The Riemann-Hurwitz formula for the genus g of a hyper-elliptic curve of degree d simplifies:

2-(2-2-0)—d (for d even)
2—-2g =
2.(2-2-0)—(d+1) (for d odd)
or d
5~ 1 (for d even)
g =
1
d% — 1 (for d 0dd)
For d =5, this gives g =331 —1=3-1=2, ///

[11.2] Show a change of variables to convert y? = 2% — 1 to something of the form y? = quintic in =.

To achieve this effect, find a linear fractional transformation g sending oo to one of the zeros of 2% — 1, such

as r — “JTH Replacing = by 2+l ip the equation gives

y2 = (x+1)6—1

T

or
2%y = (2 +1)°—2°% = 62° + 152" +202° + 152” + 62 + 1

Replacing y by y/x® gives
y? = 6x° 4+ 152 + 2023 + 1522 + 62 + 1

as desired. /]

[11.3] Determine the genus of the curve y* = 2> — 1.

This ramified covering of P! by (z,y) — x is of degree 3, and there are three distinct local cube root
functions y above all & € C except the three zeros 1, w,w? of 22 — 1, since there is no cube root function on a
neighborhood of 0. These points are totally ramified, so of ramification index e = 3 in a three-fold ramified
cover.

We can also look at the Newton polygons to confirm the total ramification: the coefficients of y3 — (2% — 1)
have vanishing order 0, 00, 00, 1 at each of the three zeros, so the Newton polygons have slope 1/3, and length
3.

To determine the ramification above oo, use coordinates 1/x,1/y in place of z,y, and look near O:
(1/y)? = (1/x)3 — 1 simplifies to 2® = y* — 23y3 or ¥ = 23/(1 — 23). Near x = 0, there are 3 distinct cube
roots of 1/(1 — 2?), so there are three distinct holomorphic functions y = x/(1 — 23)'/3, y = wa /(1 — 23)1/3,
and y = w?x/(1 — 2%)'/3 near x = 0. That is, there is no ramification above ooc.

(It is true that the curve self-intersects above oo, since those three functions y all take the same value above
x = oco. We ignore this feature.)
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By Riemann-Hurwitz, the genus g of this ramified cover is determined by

2-29 =3-(2-2:00— > (e —1)=6- > (3-1)=6-3-2=0

To=1,w,w? zo=1,w,w?

Thus, g = 1. ///

[11.4] Determine the genus of the curve y* = z* — 1.

This ramified covering of P! by (x,y) — z is of degree 4, and there are three holomorphic functions y
above all z € C except the four (distinct) zeros 41,44 of 2* — 1, since there is no cube root function on
a neighborhood of 0. These four points are totally ramified, so of ramification index e = 3 in a three-fold
ramified cover.

Newton polygons confirm the total ramification: the coefficients of ¥ — (z* — 1) have vanishing order
0, 00,00,1 at each of the four zeros, so the Newton polygons have slope 1/3, and length 3.

To determine the ramification above oo, use coordinates 1/x,1/y in place of x,y, and look near O:
(1/y)? = (1/x)* — 1 simplifies to z* = y> —z*y® or y* = 2*/(1 — 2*). The Newton polygon of y* —x*/(1—z*)
at x has vanishing orders 0, 00, 00,4, so has slope 4/3. The rise and run are relatively prime, so ramification
above oo is total: degree 3.

By Riemann-Hurwitz, the genus g of this ramified cover is determined by

2-29 =3-(2-200— Y (e, —1)—(e—1) =6— > (B-1)—(3-1) =6-4-2-2 = —4
To==11,%17 ro=+1,%1i

Thus, g = 3. /]

[11.5] Determine the local ramification above z = 0 in the ramified cover (z,y) — x € P! where
v +axy? + 22 =0.

Since the polynomial is not easily explicitly solvable for y, we use the Newton polygon of the polynomial
y® +xy? + 22, taking orders with respect to x: the orders of the coefficients are 0, 00, 1, 00, 2. Thus, there is a
length-3 segment of slope 2/3, and a length-2 segment of slope 1/2. Thus, there is a point with ramification
index 3 (the multiplicative inverse of the slope), and another point with ramification index 2 above z = 0.

I

[11.6] Determine the local ramification above z = 0 in the ramified cover (z,y) — = € P! where
y° + 2%y* + 22 = 0.

Use the Newton polygon of the polynomial y® 4+ z2y? 4 22, taking orders with respect to z: the orders of
the coefficients are 0, 00,2, 00,2. Thus, the coefficient of y? lies above the Newton polygon, which then has
a length-5 segment of slope 2/5. The rise and run are relatively prime, so there is a single, totally ramified
point over z. ///

[11.7] Show that a ramified cover f : By — Es of elliptic curves E; must actually be unramified, that is,
not ramified at any point.

By Riemann-Hurwitz, for a ramified cover of degree n of two elliptic curves,
(2-2:1) =n-(2-2-1)= ) (e, —1)
rfd y

That is,
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Thus, no e, > 1. ///

[11.8] Show that in a ramified cover C; — Cs of compact connected Riemann surfaces, the genus of C
must be at least the genus of Cj.

Let g; be the genus of C;, and n the degree of the ramified cover. If g5 = 0, certainly g1 > go, so suppose
g2 > 1. Riemann-Hurwitz is

(2-2-g1) =n-(2-2-g2) = > (e, —1)

rfd y

Rearranging,
291 —2 = n-(2gg—2)+2(ey—1) > n-(2g2 —2)
rfd y
Using g2 — 1 > 0,
g2 1+n-(g2-1) 2 1+1-(g2—1) = g2

as claimed. /]

[11.9] Determine the points z such that there is non-trivial ramification over z in the ramified covering
(z,w) — 2z from the curve w® + 5zw + 23 = 0.

Near points z, where there are 5 distinct values roots wy, ..., ws to that quintic, the distinctness of the w;
implies that %uﬁ + 5zw + 23 # 0 does not vanish there, so by the holomorphic inverse function theorem
there are five distinct holomorphic functions w of z there. Thus, there is no ramification above such z,.

To find points z, above which ramification is possible, we compute the greatest common divisor of
fw) = w® +5zw+ 2% and f'(w) = 5w? + 5z in the Euclidean ring C(z)[w], by the Euclidean algorithm: the
first step is

f(w) — %f’(w) = <w5—|—5zw+23> — % : (5w4+5z) = dzw+ 23

Away from z = 0, we can divide 42w + 2z by 2, and the remainder of f'(w) after division by w + % is the
value of f'(w) at w = —22/4, namely 4(—22/4)* +52. This is a non-zero element of C(z), as expected, since

the original polynomial w® + 52w + 23 is irreducible in C[z, w] ~ C[z][w].

However, w® + 5z,w + zg’ = 0 will have multiple roots w for z, € C such that w® + 5z,w + zg and bw?* + 5z,
have a common factor in C[w]. The gcd computation above shows that unless z, = 0 or 4(—22/4)% +52 = 0,
there is no common factor. Thus, the only possible ramification is above z = 0 and/or the seven roots of
2T = —5/64.

Changing to coordinates 1/w and 1/z at oo, we obtain the equation w® + 522w* + 2% = 0, and the Newton

polygon has a single length-5 segment of slope 3/5, so there is total ramification above z = occ. ///
[11.10] Let 2,..., 2, be points in P'. Determine the dimension of the space of meromorphic functions on
P! with poles at most at {21, ..., z,}, counting multiplicities.

(This is a very special case of the Riemann-Roch theorem.)

We can reduce to the case that none of the z; is oo, by dividing by 2", where N is the multiplicity with
which oo appears in the list. This exchanges poles at 0 with poles at 0, and is an isomorphism of vector
spaces, so does not change the dimension count.

The meromorphic functions on P! are rational functions P(z)/Q(z), where P,Q are polynomials, and @ is
not identically 0. The poles of P(z)/Q(z) are at the zeros of @, and a pole at oo of order deg P — deg @ if
that number is positive. Thus, if no poles at are allowed at oo, deg P < deg . Thus, rational functions with

3
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no poles at oo and finite poles at zq,..., 2, are of the form P(z)/(z — 2z1)...(z — z,) with P of degree at
most n. This gives n + 1 coefficients to be chosen for P, giving an (n + 1)-dimensional vector space. ///

[11.11] Let ¢i,...,¢m and 21, . .., 2, be points in P!. Determine the dimension of the space of meromorphic
functions on P! with poles at most at {z1,..., 2, }, counting multiplicities, and zeros (at least) at (i, .., Cn.

Continuing the previous argument, the functions are of the form P(z)(z—¢(1)...(z=Cn)/(z—21) ... (2 —2n)
with P of degree at most n —m. If m > n this is impossible. If m < n, this leaves (n — m) + 1 coefficients
to choose, giving an (n —m) + 1-dimensional vector space of rational functions. ///

[11.12] Let z1,...,z2, be points on an elliptic curve £ = C/A. Determine the dimension of the space of
meromorphic functions on E with poles at most at {z1,...,2,}, counting multiplicities.
(This is another special case of the Riemann-Roch theorem.)

For such a function f, evaluating the integral f'y f around a period paralellogram (indenting suitable in case
poles lie on it) directly and also by residues produces the relation ) 2 Res., f = 0. Also, an elliptic function
without poles is constant, so two elliptic functions with matching polar parts differ by a constant. Thus, the
dimension of the space with n > 0 specified poles is at most n. We claim that this bound is attained for
n > 0.

The case n = 0 is treated separately. For n = 0, such elliptic functions are entire, and constant, by Liouville:
the dimension is 1.

For n = 1, for example, since the sum of the residues is 0, f cannot have a pole, so for n = 1, the space of
such functions is still just constants, so 1-dimensional.

One approach is by direct construction of elliptic functions.

For n > 2, we can subtract multiples of translates of p(2)* with 0 < £ € Z and @'(2) - p(2)¢ with 0 < £ € Z

to leave only simple poles. This preserves the dimension count. Thus, we can assume that the zq1,..., 2z,
are distinct. Further, we can translate them, if necessary, by some small amount so that no z; € A,
prove existence by construction, and then translate back at the end. For complex numbers t¢q,...,t, with

t1 + ...+ t, =0, we would like to sum

t + + tn
z2—(A+2z1) T z2—(A+2n)

over A € A, but there will be issues of convergence, as with p(z). To understand the asymptotic behavior as
a function of A, rearrange to
1 t1 tn
—*-(7—&-...—1—7)

)\ 1_Z;\Z1 1_Z7)\Zn
1 zZ—2 Z— Zn 1
= —X~(t1-(1+ )+t (1 + >+O(ﬁ))
1 z 1 1 1 1
- —X-((tl+...+tn)x+(t1z1+...+tnzn)x>—|—O(F) =~ (e tz) +O(53)

To make this O(1/)3), similar to what was done with p(z), add %(tlzl + ...+ t,z,, and form

o tl tn t1z1 ++tn2n
f(z)_g\(z—(/\—kzl)—’—'”—’_z—()\—kzn)—’— A2 )

Thus, we have an (n — 1)-dimensional space of elliptic functions with simple poles at the 21, ..., 2z,. ///




