(September 4, 2014)

Complex analysis examples 01

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/complex/examples_2014-15/cx_ex_01.pdf]

If you want feedback from me on your treatment of these examples, please get your work to me by Friday, Sept 12, preferably as a PDF emailed to me.

[01.1] Express the two values for \sqrt{i} in terms of radicals.

[01.2] Determine all values of i^i .

[01.3] Derive the usual formula for $\sin(z+w)$ by using e^z .

[01.4] Express $\cos 5x$ as a polynomial in $\cos x$ and $\sin x$.

[01.5] By mere algebra, write a power series expansion near z = 0 for

$$f(z) = \frac{1}{(z-1)(z-2)}$$

[01.6] Determine the radius of convergence of $\sum_{n\geq 1} \frac{3^n}{n(n+1)(n+2)} z^n$.

[01.7] Determine the radius of convergence of $\sum_{n\geq 1} \frac{n!}{n^n} z^n$.

[01.8] For two complex numbers a, b, with b not a non-positive integer, show that the radius of convergence of

$$\sum_{n>0} \frac{a(a+1)(a+2)\dots(a+n-1)(a+n)}{b(b+1)(b+2)\dots(b+n-1)(b+n)} z^n$$

is at least 1.

[01.9] From the very definition of convergence, show that when the partial sums of a series $a_1 + a_2 + \ldots$ are bounded, and when the elements of the sequence $\{b_n\}$ are positive (real) and go to 0 monotonically, then the series $\sum a_n b_n$ converges.

[01.10] Show that the function $f(z) = \sum z^n/n^2$ on the open disk |z| < 1 extends to a *continuous* function on the *closed* unit disc.