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If you want feedback from me on your treatment of these examples, please get your work to me by Monday,
Oct 20, preferably as a PDF emailed to me.
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[04.3] Compute / e~ %% 2% ¢~ dx with Re(s) > —1.
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[04.4] Compute/ e~ 1o gy
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[04.5] For continuous ¢ on the unit circle |z| = 1, define
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Show that f(z) is holomorphic. Give an example of ¢ not identically 0 so that f,, is identically 0.

[04.6] Let f be an entire function such that f(z + 1) = f(z) and f(z +i) = f(2) for all z. Show that f is
constant.

[04.7] Show that a real-valued holomorphic function is constant.

[04.8] The Bergmann kernel of the unit disk is
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For f holomorphic on the open unit disk and extending continuously to a continuous function on the closed
unit disk, show that
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