(November 7, 2014)

Complex analysis examples 06

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/complex/examples_2014-15/cx_ex_06.pdf]

If you want feedback from me on your treatment of these examples, please get your work to me by Friday, Nov 21, preferably as a PDF emailed to me.

[06.1] Evaluate $\int_0^{2\pi} \frac{dt}{2+\cos t}$

[06.2] Show that $z^{10} - z^7 + 4z^2 - 1 = 0$ has exactly two zeros inside the circle |z| = 1.

[06.3] Show that $\cos z$ has exactly two complex zeros inside |z| = 2 by comparing it to $1 - \frac{z^2}{2}$, which certainly has exactly two complex zeros inside that circle.

[06.4] Prove that, given holomorphic f, g on a non-empty open set U, and given a simple zero z_o of f, for all small-enough complex ε the zero of $f + \varepsilon g$ nearest z_o is also simple.

[06.5] Let U be the region

$$U = \{ z \in \mathbb{C} : \operatorname{Re}(z) > 0, |z - (1 + i)| > 1, |z - (1 - i)| > 1 \}$$

Let \tilde{U} be the topological closure of U with the point 1 removed. (Thus, \tilde{U} includes the interval [-i, +i] along the imaginary axis, and two quarter-circles with the point 1 removed.) Construct a holomorphic function on U extending to a continuous function on \tilde{U} , bounded by 1 on the boundary *except for* 1, but *unbounded* on U.

[06.6] Let C be the usual Cantor set

 $C = \{x \in [0,1] : \text{the ternary expansion of } x \text{ contains only digits } 0 \text{ and } 2, \text{ digit } 1\}$

where terminal repeating 1's $(\dots 111111\dots)$ are converted to $\dots 2$. Show that there is no non-constant holomorphic function with real part taking values in C.

[06.7] Given R > 0, $w_o \in \mathbb{C}$, and $\varepsilon > 0$, show that there is $z \in \mathbb{C}$ with |z| > R and $|e^z - w_o| < \varepsilon$.

[06.8] For small $w \in \mathbb{C}$, let f(w) be the simple zero of $z^5 - z + w = 0$ near 0. Determine a few terms of the power series expansion of f(w) at w = 0.