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If you want feedback from me on your treatment of these examples, please get your work to me by Monday,
Feb 23, preferably as a PDF emailed to me.

[09. 1] Prove that
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[09.2] Following Euler, show that Zp primC% diverges, by using the Euler product expansion of ((s) and

considering s — 17 along the real axis.

[09.3] Prove that ¢(s) = 307, -1 does not vanish in Re(s) > 1.
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[09.4] Prove that I'(s) - T'(1 — s) = m/sin s, hence that T'(s) has no zeros, and 1/T(s) is entire.

[09.5] Prove that 5y = se™* - [[>2, (1 4 £) e~/ for some constants a,b.

[09.6] Let d(n) be the divisor function, that is, the number of positive divisors of an integer n. Show that d
is weakly multiplicative in the sense that d(mn) = d(m)-d(n) for m, n relatively prime, and that d(p*) = £+1
for p prime, and give some estimate on d(n) adequate to show that > -, d(n)/n® is absolutely convergent
for Re(s) sufficiently large positive. Show that
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[09.7] (A wvariant Perron identity) Show that, for o > 0, a vertical path integral moving upward along the
line Re(s) = o evaluates to
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[09.8] In the Gaussian integers Z[i], there are 4 units +1,+i. The norm is N(m +in) = m? + n?. Show
that the zeta function
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has an analytic continuation and functional equation
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