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[01.1] Determine all values of
(1 + i√

2

)i
.

By recognizing that cos π4 = sin π
4 = 1√

2
, that eiθ = cos θ + i sin θ, and the ambiguity that e2πin = 1 exactly

for n ∈ Z, we have
1 + i√

2
= e

πi
4 +2πin (exactly for n ∈ Z)

Then (1 + i√
2

)i
= e(

πi
4 +2πin)·i = e−

π
4−2πn (for all n ∈ Z)

[01.2] Determine the Laurent expansion of f(z) = 1/(1 + z2)3 in the annulus 1 < |z|.

Expanding a geometric series after rearranging just a bit,

1

1 + z
=

1

z
· 1

1 + 1
z

=
1

z
·
(

1 +
1

z
+

1

z2
+ . . .

)
=

1

z
− 1

z2
+

1

z3
− . . . =

∞∑
n=1

(−1)n z−n

Abel’s theorem, adapted to Laurent series (!), assures us that we can differentiate termwise, here, twice to
achieve our goal:

(−1)(−2)

(1 + z)3
=
( d
dz

)2 ∞∑
n=1

(−1)n z−n =

∞∑
n=1

(−1)n (−n)(−n− 1) z−n−2

Replacing z by z2 and dividing by 2,

1

(1 + z)3
= 1

2

∞∑
n=1

(−1)n n(n+ 1) z−2n−4 (in |z| > 1)

[01.3] Compute

∫ ∞
0

x dx

x4 + 1
.

We exploit the fact that the integrand transforms very simply upon replacing x by ix.

The integral is really the limit of the integrals
∫ R
0

as R → +∞, with the same integrand. Add to this line
segment the arc from R to iR, and then the integral along the segment from iR to 0, giving a closed curve
γR. The integral along the arc is estimated by the trivial estimate:∣∣∣ ∫

R−arc

x dx

x4 + 1

∣∣∣ ≤ (length of arc) · sup
on arc

∣∣∣ x

x4 + 1

∣∣∣ =
πR

2
· R

(R− 1)4
−→ 0 (as R→ +∞)

Parametrizing the segment from iR to 0 by [0, R], the integral from iR to 0 is∫ R

0

(iR− it) d(iR− it)
(iR− it)4 + 1

=

∫ R

0

(R− t) dt
(R− t)4 + 1

= −
∫ 0

R

t dt

t4 + 1
=

∫ R

0

t dt

t4 + 1

1
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That is, this second line-segment integral is equal to the original. Thus,

2×
∫ R

0

x dx

x4 + 1
=

∫
γR

z dz

z4 + 1
−
∫
R−arc

z dz

z4 + 1

For R > 1, the integral around γR encloses just one singularity of the integrand, namely, at the primitive
eighth root of unity zo = ζ = eπi/4 lying in the first quadrant. Thus, by the Residue Theorem,∫ ∞

0

x dx

x4 + 1
= 1

2 lim
R

∫
γR

z dz

z4 + 1
= 1

2 lim
R

2πiResz=zo
z dz

z4 + 1
= 1

2 lim
R

2πi
ζ

(ζ − ζ3)(ζ − ζ5)(ζ − ζ7)

= πi · ζ

(
√

2)(2ζ)(i
√

2)
=

π

(
√

2)(2)(
√

2)
=

π

4

[01.4] Compute

∫ ∞
−∞

eitx dx

x2 + 1
with real t.

The integral is the limit of
∫ R
−R of the same integrand, as R→ +∞. Complete this line segment to a closed

path γR by adding to it the arc from R to −R through the upper half-plane. For t ≥ 0, the exponential is
bounded in the upper half-plane, and we estimate the integral over the arc by the trivial estimate:∣∣∣ ∫

R−arc

eitx dx

x2 + 1

∣∣∣ ≤ (length of arc) · sup
on arc

∣∣∣ eitx

x2 + 1

∣∣∣ = πR · R

(R− 1)2
−→ 0 (as R→ +∞)

There is just one singularity inside γR for R > 1, namely, at z = i, so, by residues,∫ ∞
−∞

eitx dx

x2 + 1
= lim

R

∫
γR

eitz dz

z2 + 1
= lim

R
2πiResz=i

eitz

z2 + 1
= 2πi

e−t

i− (−i)
= πe−t (for t ≥ 0)

For t < 0, the change of variables x→ −x in the integral converts the integral to the t ≥ 0 case, with |t| in
place of t < 0, and ∫ ∞

−∞

eitx dx

x2 + 1
= πe−|t|

[01.5] Compute
1

12 + 1
+

1

22 + 1
+

1

32 + 1
+ . . .

Use the auxiliary function 2πi
e2πiz−1 , which we grant has singularities only at integers. We also grant that

these are simple poles, with residue 1. For R ∈ 1
2 + Z, let γR be the counter-clockwise path integral around

a square of side 2R centered at 0, and consider

1

2πi

∫
γR

2πi

e2πiz − 1
· 1

z2 + 1
dz

On one hand, granting that 2πi
e2πiz−1 is bounded away from its poles, the trivial estimate on path integrals

shows that the integral over γR goes to 0 as R→ +∞. Thus, by residues,

0 =
∑
n∈Z

Resz=n
2πi

e2πiz − 1
· 1

z2 + 1
+
∑
±

Resz=±i
2πi

e2πiz − 1
· 1

z2 + 1

=
∑
n∈Z

1

n2 + 1
+

2πi

e2πi(i) − 1
· 1

i− (−i)
+

2πi

e2πi(−i) − 1
· 1

−i− i

=
∑
n∈Z

1

n2 + 1
+

π

e−2π − 1
− π

e2π − 1

2
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Thus, subtracting the term for n = 0 and dividing by 2,∑
n∈Z

1

n2 + 1
= 1

2 ·
( π

e2π − 1
+

π

1− e−2π
− 1
)

Returning to the details we granted ourselves to make things work:

The only singularities of 2πi
e2πiz−1 are where the denominator vanishes, which is at integers. The function

z → e2πiz is Z-periodic, so determination of the residue at z = 0 determines all. Near z = 0,

2πi

e2πiz − 1
=

2πi

(1 + 2πiz + (2πiz)2/2 + . . .)− 1
=

2πi

2πiz + (2πiz)2/2 + . . .
=

1

z + 2πiz2 + . . .

=
1

z

1

1 + (2πiz + . . .)
=

1

z

(
1− (2πiz + . . .) + (2πiz + . . .)2 − . . .

)
=

1

z
− 2πi+ ...

certifying that the residue is 1 at 0.

To check that 2πi
e2πiz−1 is bounded away from poles, first note that in |Im(z)| ≥ 1 it is bounded for simple

reasons. In the region |Im(z)| ≤ 1 use periodicity to restrict 0 ≤ Re(s) ≤ 1. The region where |z − 0| ≥ 1
2 ,

|z − 1| ≥ 1
2 , and |Im(z)| ≤ 1 is compact, and 2πi

e2πiz−1 is continuous there, so is bounded.
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