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[02.1] Compute

∫ ∞
−∞

eiξx e−x
2

dx for real ξ.

The integral is the limit of finite integrals
∫ R
−R e

iξx e−x
2

dx as R→∞. Completing the square,

∫ R

−R
eiξx e−x

2

dx = e−
ξ2

4

∫ R

−R
e−(x−

iξ
2 )2 dx = e−

ξ2

4

∫ R+ iξ
2

−R+ iξ
2

e−x
2

dx

To effectively shift the contour back to the real axis, first observe that Cauchy’s theorem implies the vanishing
of the integral around the rectangle with vertices ±R and ±R + iξ

2 . The integrals on the vertical sides of
this rectangle are estimated by

∣∣∣ ∫ R+ iξ
2

R

e−z
2

dz
∣∣∣ ≤ length · sup ≤ |ξ|

2
· sup
z on [R,R+ iξ

2 ]

eRe(z2) =
|ξ|
2
e−R

2+ξ2

For fixed ξ, this goes to 0 as R →∞. The other vertical side is estimated essentially identically. Thus, the
limits as R→∞ of the left-to-right integrals along the two horizontal sides of the rectangle are equal, giving

∫ ∞
−∞

eiξx e−x
2

dx = lim
R
e−

ξ2

4

∫ R+ iξ
2

−R+ iξ
2

e−x
2

dx = lim
R
e−

ξ2

4

∫ R

−R
e−x

2

dx = e−
ξ2

4

∫ ∞
−∞

e−x
2

dx

Recall that the latter integral can be evaluated by squaring, converting to polar coordinates, and replacing
r by

√
t: (∫ ∞

−∞
e−x

2

dx
)2

=

∫ ∞
0

∫ 2π

0

e−r
2

dθ r dr = 2π

∫ ∞
0

e−r
2

r dr

= 2π

∫ ∞
0

e−t
√
t

1
2 dt√
t

= π

∫ ∞
0

e−t dt = π

[02.2] Compute

∫ ∞
0

xs dx

x2 − x+ 1
.

This converges absolutely for −1 < Re(s) < 1. The computation will use −1 < Re(s) < 0, and the identity
principle assures us that the outcome is correct in the larger range.

Use a Hankel/keyhole contour Hε with small ε > 0. That is, come in from +∞ to ε, go counter-clockwise
around a small circle of radius ε back to ε, and then back to +∞. We want the real-valued log x for
xs = es log x on the part of the path from ε to +∞, so on the earlier part of the path from ∞ to ε, the
logarithm of x should be log x− 2πi. As ε→ 0, the integral around the small circle goes to 0, and Cauchy’s
theorem implies that the integral over Hε is independent of ε. Thus, the integral along Hε is∫

Hε

xs dx

x2 − x+ 1
= lim

ε→0

∫
Hε

xs dx

x2 − x+ 1
= (1− e−2πis)

∫ ∞
0

xs dx

x2 − x+ 1

1



Paul Garrett: Complex analysis midterm discussion 02 (November 1, 2014)

On the other hand, the Hankel-contour integral is the limit of similar integrals to-and-from large positive R,
rather than +∞, as R→ +∞. Adding a clockwise circle of radius R gives an integral over a closed path γR,
which picks up −2πi (negative sign because the path is clockwise) times the residues inside the path. The
integral over the circle is estimated as usual by

length · sup ≤ 2πR · R
Re(s)

(R− 1)2
−→ 0 (for Re(s) < 0)

The only poles are at the zeros of the denominator, namely, the primitive sixth roots of unity. The arguments
of these are obtained by starting with argument 0 on [ε,R] and going clockwise, so the sth powers of these
sixth roots of unity are es·(−πi/3) and es·(−5πi/3). Thus, by residues,∫

Hε

xs dx

x2 − x+ 1
= lim

R→∞

∫
γR

xs dx

x2 − x+ 1
= −2πi

(
Resz=e−πi/3

xs

x2 − x+ 1
+ Resz=e−5πi/3

xs

x2 − x+ 1

)

= −2πi
( es·(−πi/3)

e−πi/3 − e−5πi/3
+

es·(−5πi/3)

e−5πi/3 − e−πi/3
)

Thus, ∫ ∞
0

xs dx

x2 − x+ 1
=

−2πi

1− e−2πis
( es·(−πi/3)

e−πi/3 − e−5πi/3
+

es·(−5πi/3)

e−5πi/3 − e−πi/3
)

=
−2πi

−i
√

3

e−πis/3 − e−5πis/3

1− e−2πis
=

2π√
3

e
2
3πis − e− 2

3πis

eπis − e−πis
=

2π√
3

sin 2
3πs

sinπs

[02.3] Show that a holomorphic function f on a non-empty open set U ⊂ C such that |f(z)| = 1 for all
z ∈ U is necessarily constant.

Suppose f is not constant. Let ϕ be the inverse Cayley map ϕ(z) =

(
1 −i
−i 1

)
(z) =

z − i
−iz + 1

. This maps

the unit circle to the real line, apart from the point i, which is sent to infinity. The points in U where
f(z) = i cannot have an accumulation point in U , or else, by the identity principle, f is identically i. Thus,
apart from the discrete set of points Z in U on which f(z) = i, the function g(z) = (ϕ ◦ f)(z) is real-valued

and holomorphic. At z ∈ U − Z, for small real h, the difference quotients g(z+h)−g(z)
h and g(z+ih)−g(z)

ih are
real and imaginary, respectively. As h→ 0, both limits are g′(zo), so both limits are 0. That is, g′ = 0, and
g is constant. Then f = ϕ−1 ◦ g is constant. ///

[02.4] Show that there is a holomorphic f(z) = 3
√
z4 − 1 near any point zo with z4o 6= 1. Determine the

radius of convergence of the power series for f(z) expanded at 0.

Recall that there is a holomorphic logarithm defined near zo off the non-positive real axis (−∞, 0] by∫ z

1

dw

w

where the integration is along a straight line segment from 1 to z. Near zo off the positive real axis [0,+∞),
another logarithm can be defined by ∫ −z

1

dw

w
+ πi

With L(z) being either of these, we do have eL(z) = z, since L′(z) = 1/z, L(1) = 0, and the second derivative
of eL(z) vanishes: (

eL(z)
)′′

=
(
L′(z) · eL(z)

)′
=
−1

z2
· eL(z) +

(1

z

)2
· eL(z) = 0

2
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Thus, (e
1
3L(z))3 = z for z near any zo 6= 0, by using one or the other of L1 or L2. Thus, for zo 6= ±1,±i,

there are holomorphic logarithms L1(z − 1), L2(z + 1), L3(z − i), L4(z + i) for z near zo, and(
e

1
3 (L1(z−1)+L2(z+1)+L3(z−i)+L4(z+i))

)3
= (z − 1)(z + 1)(z − i)(z + i) = z4 − 1

At zo = 0, the power series for L1(z−1) converges absolutely on the largest open disk centered at 0 on which
L1(z − 1) is holomorphic. Since there is a holomorphic logarithm L(z − 1) on the half-plane Re(z − 1) < 0
(for example), there certainly is a holomorphic logarithm on |z| < 1. Thus, the power series at zo = 0 for
log(z− 1) converges at least on the open unit disk. The same applies to logarithms of z+ 1, z− i, and z+ i.
Thus, there is holomorphic

3
√
z4 − 1 = e

1
3 (L1(z−1)+L2(z+1)+L3(z−i)+L4(z+i))

at least on the open unit disk. On the other hand, while this discussion shows that there are holomorphic
(z + 1)1/3, (z − i)1/3, and (z + i)1/3 at z = 1, there is no holomorphic (z − 1)1/3 at z = 1. Among several
ways to be sure of this, one way is to look at power series expansions:(

co + c1(z − 1) + . . .
)3

= c3o + 3c2oc1(z − 1) + . . .

For co 6= 0 this cannot be z − 1, but for co = 0 the linear term of the cube is inevitably 0. Thus, the power
series cannot converge at z = 1, so the radius of convergence is exactly 1. ///
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