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[02.1] Compute / " ¢ dx for real £,

— 00

The integral is the limit of finite integrals f_RR €T e~ dz as R — oc. Completing the square,

R > R _ . fR+E
o2 _ (162 _€ 2
/ezé"ezdx:e 4/6(1 2) dr = e 3 e dx
-R -R —R+%

To effectively shift the contour back to the real axis, first observe that Cauchy’s theorem implies the vanishing
of the integral around the rectangle with vertices +R and £R + % The integrals on the vertical sides of
this rectangle are estimated by

R+%
’/ e dz < length - sup < @ sup eRe () = @e*R%r£2
R z on [R,RJr%] 2

For fixed &, this goes to 0 as R — co. The other vertical side is estimated essentially identically. Thus, the
limits as R — oo of the left-to-right integrals along the two horizontal sides of the rectangle are equal, giving

o) 2 R+% 2 R 2 [’}
itr g2 .o_e 2 . g 2 _£ 2
/ e? ¢ dr = lime 7 / e dr = lime 1 / e dr = e 1 / e " dx
—o0 R —R-‘r% R —-R —o0

Recall that the latter integral can be evaluated by squaring, converting to polar coordinates, and replacing

r by Vi ,
oo 2 oo U oo
(/ e da:) = / / e df rdr = 27?/ e rdr
—0 o Jo 0

_27r/ooet\/iédt :W/ooeftdt:ﬂ'
0 Vit 0

x5 dx

This converges absolutely for —1 < Re(s) < 1. The computation will use —1 < Re(s) < 0, and the identity
principle assures us that the outcome is correct in the larger range.

Use a Hankel /keyhole contour H. with small € > 0. That is, come in from +oco to €, go counter-clockwise
around a small circle of radius € back to e, and then back to +o0o. We want the real-valued logx for
x° = €197 on the part of the path from e to 400, so on the earlier part of the path from oo to e, the
logarithm of x should be logx — 2mi. As e — 0, the integral around the small circle goes to 0, and Cauchy’s
theorem implies that the integral over H. is independent of €. Thus, the integral along H. is

/ 2:55 dx ~ lim 2955 dx _ (1_6_2m's)/°° x® dx
g2 —r+1 e=0 g 2?2 —x+1 0o x2—x+1
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On the other hand, the Hankel-contour integral is the limit of similar integrals to-and-from large positive R,
rather than +o00, as R — 4o00. Adding a clockwise circle of radius R gives an integral over a closed path g,
which picks up —2mi (negative sign because the path is clockwise) times the residues inside the path. The
integral over the circle is estimated as usual by

Re(s)
length -sup < 27R- (ﬁ—il)Q — 0 (for Re(s) < 0)

The only poles are at the zeros of the denominator, namely, the primitive sixth roots of unity. The arguments
of these are obtained by starting with argument 0 on [e, R] and going clockwise, so the s powers of these
sixth roots of unity are e*(=™/3) and e*(=57/3)  Thus, by residues,

/ z® dx . / x® dx 5 '(R x® LR x® )
————— = lim ———— = —27mi(Res,_, rijs—5—— €S,_o—5mi/s —5———
g r?—x+1 R—oo ) 2 —x 41 S Fme Y ]
es-(—ﬂ'i/3) 654(—5771'/3)
= _2m(e—m/3 ey S - ey N e—‘/ri/?))

Thus,

22—x+1 1—e2mis

© xfdx —27i e85 (—mi/3) o5+ (—57mi/3)
/o (efm'/S — o—5mi/3 + e—5mi/3 _ e*ﬂ'i/B)

P — 574 2 — 25 :
—97mi e mis/3 _ e 57is/3 I e3TIS _ o—3Tis 27 sin %775
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[02.3] Show that a holomorphic function f on a non-empty open set U C C such that |f(z)| = 1 for all
z € U is necessarily constant.

Suppose f is not constant. Let ¢ be the inverse Cayley map ¢(z) = ( lz' _12) (2) = % This maps
- —iz

the unit circle to the real line, apart from the point ¢, which is sent to infinity. The points in U where
f(2) =i cannot have an accumulation point in U, or else, by the identity principle, f is identically 7. Thus,

apart from the discrete set of points Z in U on which f(z) = ¢, the function g(z) = (¢ o f)(z) is real-valued
g(z+h) 9(2) and g(z+zh) 9(2)

and holomorphic. At z € U — Z, for small real h, the difference quotients are
real and imaginary, respectively. As h — 0, both limits are ¢’(z,), so both hmlts are 0. That is, g =0, and
g is constant. Then f = p~1 o0 g is constant. ///

[02.4] Show that there is a holomorphic f(z) = /2% — 1 near any point z, with 2} # 1. Determine the
radius of convergence of the power series for f(z) expanded at 0.

Recall that there is a holomorphic logarithm defined near z, off the non-positive real axis (—oo, 0] by

? dw
1 w

where the integration is along a straight line segment from 1 to z. Near z, off the positive real axis [0, +00),
another logarithm can be defined by
—Zz
dw )
— +m
1 w

With L(z) being either of these, we do have e%(*) = 2, since L'(2) = 1/z, L(1) = 0, and the second derivative

of eX(#) vanishes: ; ) ,
(euz)) _ (L/(Z).euz)) _ ;21.€L<z>+ (1) LB _
z z
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Thus, (e%L(z))3 = z for z near any z, # 0, by using one or the other of Ly or Lo. Thus, for z, # +1, +i,
there are holomorphic logarithms Lq(z — 1), La(z + 1), L3(z — @), L4(z + ©) for z near z,, and

(e%(Ll(2*1)+L2(z+1)+L3(Z*i)+L4(Z+i)))3 = z-1)(+D(z—i)(z+i) = 22 -1

At z, = 0, the power series for L1 (z—1) converges absolutely on the largest open disk centered at 0 on which
Li(z — 1) is holomorphic. Since there is a holomorphic logarithm L(z — 1) on the half-plane Re(z — 1) < 0
(for example), there certainly is a holomorphic logarithm on |z| < 1. Thus, the power series at z, = 0 for
log(z — 1) converges at least on the open unit disk. The same applies to logarithms of z + 1, z — ¢, and z + .
Thus, there is holomorphic

A1 = e%(L1(z—1)+L2(z+1)+L3(z—z‘)+L4(z+i))
at least on the open unit disk. On the other hand, while this discussion shows that there are holomorphic

(z4+ 1)Y3, (z —49)'/3, and (2 +i)'/? at z = 1, there is no holomorphic (z — 1)*/3 at z = 1. Among several
ways to be sure of this, one way is to look at power series expansions:

3
(co+cl(zfl)+...) = S +3Cc(z—1)+...

For ¢, # 0 this cannot be z — 1, but for ¢, = 0 the linear term of the cube is inevitably 0. Thus, the power
series cannot converge at z = 1, so the radius of convergence is exactly 1. ///




