(November 1, 2014)

Complex analysis midterm discussion02

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is

http://www.math.umn.edu/~garrett/m/complex/examples_2014-15/midterm_discussion_02.pdf]

[02.1] Compute
$$\int_{-\infty}^{\infty} e^{i\xi x} e^{-x^2} dx$$
 for real ξ .

The integral is the limit of finite integrals $\int_{-R}^{R} e^{i\xi x} e^{-x^2} dx$ as $R \to \infty$. Completing the square,

$$\int_{-R}^{R} e^{i\xi x} e^{-x^2} dx = e^{-\frac{\xi^2}{4}} \int_{-R}^{R} e^{-(x-\frac{i\xi}{2})^2} dx = e^{-\frac{\xi^2}{4}} \int_{-R+\frac{i\xi}{2}}^{R+\frac{i\xi}{2}} e^{-x^2} dx$$

To effectively shift the contour back to the real axis, first observe that Cauchy's theorem implies the vanishing of the integral around the rectangle with vertices $\pm R$ and $\pm R + \frac{i\xi}{2}$. The integrals on the vertical sides of this rectangle are estimated by

$$\left| \int_{R}^{R+\frac{i\xi}{2}} e^{-z^{2}} dz \right| \leq \text{length} \cdot \sup \leq \frac{|\xi|}{2} \cdot \sup_{z \text{ on } [R,R+\frac{i\xi}{2}]} e^{\text{Re}(z^{2})} = \frac{|\xi|}{2} e^{-R^{2}+\xi^{2}}$$

For fixed ξ , this goes to 0 as $R \to \infty$. The other vertical side is estimated essentially identically. Thus, the limits as $R \to \infty$ of the left-to-right integrals along the two horizontal sides of the rectangle are *equal*, giving

$$\int_{-\infty}^{\infty} e^{i\xi x} e^{-x^2} dx = \lim_{R} e^{-\frac{\xi^2}{4}} \int_{-R+\frac{i\xi}{2}}^{R+\frac{i\xi}{2}} e^{-x^2} dx = \lim_{R} e^{-\frac{\xi^2}{4}} \int_{-R}^{R} e^{-x^2} dx = e^{-\frac{\xi^2}{4}} \int_{-\infty}^{\infty} e^{-x^2} dx$$

Recall that the latter integral can be evaluated by squaring, converting to polar coordinates, and replacing r by \sqrt{t} :

$$\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} d\theta \, r \, dr = 2\pi \int_{0}^{\infty} e^{-r^2} \, r \, dr$$
$$= 2\pi \int_{0}^{\infty} e^{-t} \sqrt{t} \, \frac{\frac{1}{2} \, dt}{\sqrt{t}} = \pi \int_{0}^{\infty} e^{-t} \, dt = \pi$$

 $[02.2] \quad \text{Compute } \int_0^\infty \frac{x^s \, dx}{x^2 - x + 1}.$

This converges absolutely for $-1 < \operatorname{Re}(s) < 1$. The computation will use $-1 < \operatorname{Re}(s) < 0$, and the identity principle assures us that the outcome is correct in the larger range.

Use a Hankel/keyhole contour H_{ε} with small $\varepsilon > 0$. That is, come in from $+\infty$ to ε , go counter-clockwise around a small circle of radius ε back to ε , and then back to $+\infty$. We want the real-valued log x for $x^s = e^{s \log x}$ on the part of the path from ε to $+\infty$, so on the earlier part of the path from ∞ to ε , the logarithm of x should be $\log x - 2\pi i$. As $\varepsilon \to 0$, the integral around the small circle goes to 0, and Cauchy's theorem implies that the integral over H_{ε} is *independent* of ε . Thus, the integral along H_{ε} is

$$\int_{H_{\varepsilon}} \frac{x^s \, dx}{x^2 - x + 1} \; = \; \lim_{\varepsilon \to 0} \int_{H_{\varepsilon}} \frac{x^s \, dx}{x^2 - x + 1} \; = \; (1 - e^{-2\pi i s}) \int_0^\infty \frac{x^s \, dx}{x^2 - x + 1}$$

On the other hand, the Hankel-contour integral is the limit of similar integrals to-and-from large positive R, rather than $+\infty$, as $R \to +\infty$. Adding a clockwise circle of radius R gives an integral over a closed path γ_R , which picks up $-2\pi i$ (negative sign because the path is clockwise) times the residues inside the path. The integral over the circle is estimated as usual by

$$\operatorname{length} \cdot \sup \leq 2\pi R \cdot \frac{R^{\operatorname{Re}(s)}}{(R-1)^2} \longrightarrow 0 \quad (\operatorname{for} \operatorname{Re}(s) < 0)$$

The only poles are at the zeros of the denominator, namely, the primitive sixth roots of unity. The arguments of these are obtained by starting with argument 0 on $[\varepsilon, R]$ and going clockwise, so the s^{th} powers of these sixth roots of unity are $e^{s \cdot (-\pi i/3)}$ and $e^{s \cdot (-5\pi i/3)}$. Thus, by residues,

$$\int_{H_{\varepsilon}} \frac{x^s \, dx}{x^2 - x + 1} = \lim_{R \to \infty} \int_{\gamma_R} \frac{x^s \, dx}{x^2 - x + 1} = -2\pi i \Big(\operatorname{Res}_{z=e^{-\pi i/3}} \frac{x^s}{x^2 - x + 1} + \operatorname{Res}_{z=e^{-5\pi i/3}} \frac{x^s}{x^2 - x + 1} \Big)$$
$$= -2\pi i \Big(\frac{e^{s \cdot (-\pi i/3)}}{e^{-\pi i/3} - e^{-5\pi i/3}} + \frac{e^{s \cdot (-5\pi i/3)}}{e^{-5\pi i/3} - e^{-\pi i/3}} \Big)$$

Thus,

$$\int_{0}^{\infty} \frac{x^{s} dx}{x^{2} - x + 1} = \frac{-2\pi i}{1 - e^{-2\pi i s}} \left(\frac{e^{s \cdot (-\pi i/3)}}{e^{-\pi i/3} - e^{-5\pi i/3}} + \frac{e^{s \cdot (-5\pi i/3)}}{e^{-5\pi i/3} - e^{-\pi i/3}} \right)$$
$$= \frac{-2\pi i}{-i\sqrt{3}} \frac{e^{-\pi i s/3} - e^{-5\pi i s/3}}{1 - e^{-2\pi i s}} = \frac{2\pi}{\sqrt{3}} \frac{e^{\frac{2}{3}\pi i s} - e^{-\frac{2}{3}\pi i s}}{e^{\pi i s} - e^{-\pi i s}} = \frac{2\pi}{\sqrt{3}} \frac{\sin \frac{2}{3}\pi s}{\sin \pi s}$$

[02.3] Show that a holomorphic function f on a non-empty open set $U \subset \mathbb{C}$ such that |f(z)| = 1 for all $z \in U$ is necessarily constant.

Suppose f is not constant. Let φ be the inverse Cayley map $\varphi(z) = \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} (z) = \frac{z-i}{-iz+1}$. This maps the unit circle to the real line, apart from the point i, which is sent to infinity. The points in U where f(z) = i cannot have an accumulation point in U, or else, by the identity principle, f is identically i. Thus, apart from the *discrete* set of points Z in U on which f(z) = i, the function $g(z) = (\varphi \circ f)(z)$ is real-valued and holomorphic. At $z \in U - Z$, for small real h, the difference quotients $\frac{g(z+h)-g(z)}{h}$ and $\frac{g(z+ih)-g(z)}{ih}$ are real and imaginary, respectively. As $h \to 0$, both limits are $g'(z_o)$, so both limits are 0. That is, g' = 0, and g is constant. Then $f = \varphi^{-1} \circ g$ is constant.

[02.4] Show that there is a holomorphic $f(z) = \sqrt[3]{z^4 - 1}$ near any point z_o with $z_o^4 \neq 1$. Determine the radius of convergence of the power series for f(z) expanded at 0.

Recall that there is a holomorphic logarithm defined near z_o off the non-positive real axis $(-\infty, 0]$ by

$$\int_{1}^{z} \frac{dw}{w}$$

where the integration is along a straight line segment from 1 to z. Near z_o off the positive real axis $[0, +\infty)$, another logarithm can be defined by

$$\int_{1}^{-z} \frac{dw}{w} + \pi i$$

With L(z) being either of these, we do have $e^{L(z)} = z$, since L'(z) = 1/z, L(1) = 0, and the second derivative of $e^{L(z)}$ vanishes:

$$\left(e^{L(z)}\right)'' = \left(L'(z) \cdot e^{L(z)}\right)' = \frac{-1}{z^2} \cdot e^{L(z)} + \left(\frac{1}{z}\right)^2 \cdot e^{L(z)} = 0$$

Thus, $(e^{\frac{1}{3}L(z)})^3 = z$ for z near any $z_o \neq 0$, by using one or the other of L_1 or L_2 . Thus, for $z_o \neq \pm 1, \pm i$, there are holomorphic logarithms $L_1(z-1), L_2(z+1), L_3(z-i), L_4(z+i)$ for z near z_o , and

$$\left(e^{\frac{1}{3}(L_1(z-1)+L_2(z+1)+L_3(z-i)+L_4(z+i))}\right)^3 = (z-1)(z+1)(z-i)(z+i) = z^4 - 1$$

At $z_o = 0$, the power series for $L_1(z-1)$ converges absolutely on the largest open disk centered at 0 on which $L_1(z-1)$ is holomorphic. Since there is a holomorphic logarithm L(z-1) on the half-plane $\operatorname{Re}(z-1) < 0$ (for example), there certainly is a holomorphic logarithm on |z| < 1. Thus, the power series at $z_o = 0$ for $\log(z-1)$ converges at least on the open unit disk. The same applies to logarithms of z+1, z-i, and z+i. Thus, there is holomorphic

$$\sqrt[3]{z^4 - 1} = e^{\frac{1}{3}(L_1(z-1) + L_2(z+1) + L_3(z-i) + L_4(z+i))}$$

at least on the open unit disk. On the other hand, while this discussion shows that there are holomorphic $(z+1)^{1/3}$, $(z-i)^{1/3}$, and $(z+i)^{1/3}$ at z=1, there is no holomorphic $(z-1)^{1/3}$ at z=1. Among several ways to be sure of this, one way is to look at power series expansions:

$$(c_o + c_1(z-1) + \dots)^3 = c_o^3 + 3c_o^2 c_1(z-1) + \dots$$

For $c_o \neq 0$ this cannot be z - 1, but for $c_o = 0$ the linear term of the cube is inevitably 0. Thus, the power series cannot converge at z = 1, so the radius of convergence is exactly 1.