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[03.1] Give an explicit conformal map of the half-disk {z = = + 4y : |2| < 1, = > 0} to the unit disk
{z:]z] < 1}.

These are both non-degenerate bi-gons, so we know this can be accomplished by a composite of linear
fractional transformations and power maps z — z“.

First, map one of the vertices +¢ to oo, and the other to 0, by z — z—ff, for example. To determine the
images of the sides, it suffices to track a third point on each, in addition to +i. For the vertical straight line
segment from —i to 44 use the third point 0, which maps to —1. Thus, that segment maps to the ray along
the negative real axis. For the half-circle, use third point 1, which maps to (1 +4)/(1 — i) = 4, so this side

maps to the positive imaginary axis.

Rotate clockwise by 7/2 radians, by multiplying by —i, to put one edge on the positive real axis, so that
the bi-gon becomes the interior of the first quadrant. Use z — 22 to map the first quadrant to the upper

half-plane, and then the inverse Cayley map z — —Zil to map to the disk.

Altogether, this is
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mapping the half-disk to the disk. ///

[03.2] Determine a finite set S C C of points such that for w, ¢ S there is a holomorphic function f(w)
near w, such that z = f(w) gives a solution to the equation 2° — 5z — w = 0. (Hint: holomorphic inverse
function theorem.)

In a relation F(z) = w with holomorphic F, the holomorphic inverse function theorem can only fail at points
2, where F’(z,) = 0. In the case at hand, F(2) = 2% — 52, F/(z) = 5(2* — 1), so the inverse function theorem
can only fail at z, = £1, . The corresponding values of w = F(z,) are

W, = 25— 520 = 2o(22 — 1)+ 4z, = 42, = +4, +4i (for z2 =1)
Thus, excluding S = {£4, £4i} ensures a local holomorphic inverse. ///

[03.3] Show that f(z) = ¢’* — 2 has at least one complex zero.

One approach is by the argument principle: the net change of the argument of f around a large-enough box,
with vertices +£7 +¢T', is 27 times the number of zeros inside (assuming that T is adjusted so that there are
no zeros exactly on the rectangle: this adjustment is possible, by the identity principle).
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Along the top side, |e**+T)| = ¢~ which is (much!) smaller than |z 4 T| for T > 1, for example. Thus,

along that top edge, the argument of e?* — 2 stays within 7/2 of that of z = x + iT. Thus, while arg z goes
from 7/4 to 3 /4 as z = x +iT goes from T +iT to —T + T, the argument of e’* — z can at most have net
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In any case, it is O(1), in Landau’s notation.

and at least by

Along the bottom side, |e!(*+#T)| = e which is (much!) larger than |+T +4T| for T > 6, for example. Thus,
along the bottom edge, the argument of _eiz — 2z stays within /2 of that of ¢’*. Thus, while arg e!®—T) = g
goes from —T to +7, the argument of e'* — z changes at most by

(r+3)-(-1-2) = 21+ 001

and at least by

(r-3)-(=r+3) = 2reom

Along the vertical sides, use the trick that the absolute value of the net change in argument is at most
27(q+ 1) where ¢ is the number of times the real part vanishes. Further, slightly adjust 7" so that cosT = 0,
so that

Re (' T+ — (T +iy)) = cosT —T = —T

That is, the real part does not vanish at all along the vertical edges, so the net changes are bounded by
+27r = O(1).

Putting these together, for large-enough 7T, the net change in the argument around the +7 £ ¢T rectangle
is 27"+ O(1), so the number of zeros inside is £ 4+ O(1). For large-enough T', this is greater than 1, so there
is at least one zero inside. ///




