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[04.1] Give a harmonic function u on the annulus 1
2 ≤ |z| ≤ 2 such that on the outer boundary circle |z| = 2

the boundary-value function is u(2eiθ) = eiθ, while on the inner boundary circle |z| = 1
2 the boundary-value

function is u( 1
2e
iθ) = e−iθ.

Recall that we showed that all harmonic functions on an annulus are of the form

ao + bo log |z|+
∑

06=n∈Z
anz

n + bnz
b

At the very least, one should remember that log |z| is harmonic, and all the other terms are either holomorphic
or anti-holomorphic, so certainly harmonic.

We might also break the problem into two pieces, namely, making one harmonic function u1 that is eiθ0 on
the outer circle while 0 on the inner, and making a second harmonic function u2 that is 0 on the outer circle
and e−iθ on the inner.

For the On circles z = reiθ, both zn and z−n give constant multiples of einθ, for any n ∈ Z. Thus, any
az+ bz−1 will give a multiple of eiθ on every circle. To make the multiple be exactly eiθ on |z| = 2 and 0 on
|z| = 1

2 is to require {
a · 2 + b · 12 = 1
a · 12 + b · 2 = 0

which gives a = 8/15, b = −2/15, so

u1 =
8

15
z − 2

15
z−1

Similarly, for u2, every expression az−1 + bz will be a constant multiple of e−iθ on circles. To make the
multiple be exactly 0 on |z| = 2 and e−iθ on |z| = Hf is to require{

a · 12 + b · 2 = 0
a · 2 + b · 12 = 1

which is the same system as for the constants for u1. Thus,

u2 =
8

15
z−1 − 2

15
z

Putting the two together, the desired harmonic function on the annulus is

8

15
z − 2

15
z−1 +

8

15
z−1 − 2

15
z

[04.2] Show that for t ∈ R ∣∣Γ( 1
2 + it)

∣∣2 =
2π

eπt + e−πt

It is reasonable to imagine that this would follow from the relation

Γ(s) · Γ(1− s) =
π

sinπs
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and then we can contemplate how much of the proof of this relation we might want to recall.

Taking s = 1
2 + it with real t, recalling that Γ(s) = Γ(s),

|Γ( 1
2 + it)|2 = Γ(1

2 + it) · Γ( 1
2 + it) = Γ( 1

2 + it) · Γ( 1
2 + it) = Γ( 1

2 + it) · Γ( 1
2 − it)

= Γ(1
2 + it) · Γ(1− ( 1

2 + it)) =
π

sinπ( 1
2 + it)

Then

sinπ( 1
2 + it) =

eiπ(
1
2+it) − e−iπ(

1
2+it)

2i
=

eiπ/2 · e−πt − e−iπ/2 · eπt

2i
=

e−πt + eπt

2

So

|Γ( 1
2 + it)|2 =

π

sinπ( 1
2 + it)

=
2π

e−πt + eπt

That reflection identity can be proven in at least two ways. One way is to use Euler’s integral for both Γ(s)
and Γ(1− s) in the range 0 < Re(s) < 1, change variables, and then use the Hankel contour, as in the notes.
Another way, feasible after we have the Hadamard product facts in hand, if we somehow believe that Γ(s)
has no 0s, and is of growth-order λ = 1, is to use the product expansion

1

Γ(s)
= ea+bs

∞∏
n=1

(
1 +

s

n

)
e−s/n

and use Γ(1− s) = −sΓ(−s):

1

Γ(s) Γ(1− s)
=

−s
Γ(s) Γ(−s)

= −sea+bs
∞∏
n=1

(
1 +

s

n

)
e−s/n · ea−bs

∞∏
n=1

(
1 +
−s
n

)
es/n

= −e2a · s
∞∏
n=1

(
1− s2

n2

)
= constant · sinπs

by grouping terms. To determine the constant, take s = 1
2 , and recall the usual trick:

Γ( 1
2 )2 =

(∫ ∞
0

e−t t
1
2
dt

t

)2
=
(∫ ∞

0

e−t
2

t
2t dt

t2

)2
=
(∫ ∞
−∞

e−t
2

dt
)2

=

∫
R2

e−(x
2+y2) dx dy =

∫ ∞
0

∫ 2π

0

e−r
2

dθ r dr = 2π

∫ ∞
0

e−r
2

r dr = π

∫ ∞
0

e−r
2

2r dr

= π

∫ ∞
0

e−u du = π

Thus,
1

Γ(s) Γ(1− s)
=

sinπs

π

[04.3] Prove that

∏
n≥3

(
1 +

1

n log n

)
= +∞ and

∏
n≥3

(
1− 1

n log n

)
= 0
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For the first, let’s prove by induction that

N∏
n=1

(1 + an) ≥ 1 + a1 + a2 + . . .+ aN (for an > 0)

The assertion is 1 + a1 ≥ 1 + a1 for N = 1. By induction,

N+1∏
n=1

(1 + an) = (1 + aN+1) ·
N∏
n=1

(1 + an) ≥ (1 + aN+1) ·
(

1 + a1 + . . .+ aN

)

= 1 + a1 + . . .+ aN+1 + aN+1

(
a1 + . . .+ aN

)
≥ 1 + a1 + . . .+ aN+1

by the positivity assumption. Thus, using the monotonicity of 1/t log t,

∏
3≤n≤N

(
1 +

1

n log n

)
≥ 1 +

∑
3≤n≤N

1

n log n
≥
∫ N

3

dt

t log t
= log logN − log log 3 ≥ log logN

This goes to +∞ as N → +∞, so the infinite product has value +∞.

For the second product, use

log(1− a) = −
(
a+

a2

2
+
a3

3
+ . . .

)
≤ −a (for 0 < a < 1)

so

log
∏

3≤n≤N

(
1− 1

n log n

)
=

∑
3≤n≤N

log
(

1− 1

n log n

)
≤ −

∑
3≤n≤N

1

n log n

≤ −
∫ N

3

dt

t log t
≤ −(log logN − log log 3)

again by monotonicity of 1/t log t. This goes to −∞ as N → +∞, so the product itself goes to 0. ///
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