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[05.1] Exhibit a change of variables so that
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Letting « = gy for any linear fractional transformation g that moves oo to a finite point, such as x = y/(y—1).
For this example, this gives dx = @ dl)m and then
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The limits can be rearranged, etc. /]

05.2] For lattice A C C, express —L— in terms of p(z) and @’(z). Do not worry about explicit
AEA (z—N) 2 ©
determination of constants, although explication of them would earn extra credit.

Let f(z) be the given function. In fact, visibly, it is —1/(2 -3 - 4) times the third derivative of p(z). It is
odd. The Laurent expansion of the even function p(z) at 0 is of the form

1
p(z) = ?+a222+a4z4—|—...
with vanishing constant due to the convergence trick. Thus,
/ —2 3
P'(2) = Z—3+2a22+4a4z + ...

and

Hz) = 2~_31~4'(_2'3.4

Since f(z) has no poles except on A, if we can cancel these poles by subtracting a polynomial in (z) and
¢'(2), what is left must be a constant, by Liouville. To get rid of the 1/2° term, subtract a multiple of
p(z) - ©'(2). The latter product is

1
p +(2-3~4)a4z+...) :Z—5+a4z+...

-2 2a9 —2a —2
— 7+¥+(4a4+2a§—2a4)2+ = Z75+(2a4+2a§)z+

Thus,
fz)+ %p(z)p’(z) = (agz+...)+(as+a3)z+...) = O(2)

Thus, f(2) + 39(2)¢'(z) is a holomorphic elliptic function, so is constant, but vanishes at 0, so is 0. Further
examination of the coefficients that appear is not necessary. ///

[05.3] Let wi,ws be a basis for a lattice A C C. Express p(z + %) as a rational function of p(z). Do not
worry about explicit determination of constants, although explication of them would earn extra credit.
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The function f(z) = p(z 4+ %4) is still an even elliptic function, for the same lattice, and with double poles
at A + %t. Since the number of poles is the number of zeros, f has exactly two zeros, z1, 22 (which for some
lattices will coincide), and by even-ness have the symmetry zo = —z; mod A.

The possibility that z; € A needs separate treatment.

First, treat z; ¢ A. The function p(z) — p(z1) vanishes at z; and —z;, and/or vanishes doubly for

z1 = —z1 mod A. Since the number of zeros is the number of poles, these are the only zeros of p(z) — p(z1),
and "
plz+ %)
p(2) — p(21)

has no zeros off A, and no new poles have been introduced. To get rid of the (double) poles off A, namely,

at A + %, multiply by p(z) — p(%+), which has a double zero at p(%"), and no other zeros or poles off A.
Thus,

Jﬁf&%-@w—m?n

has no zeros or poles off A. Since the number of zeros is the number of poles, that number must be 0, so the
latter expression is constant, and

Y1y — cons 7@(2) —o(=1) or p(<t
o+ = const x FEHE (for p(%) #0)

The case that the zero z; of p(z + %) is in A is (%) = 0, so p(z) itself has a double zero at w;/2 (and no
others, by the same counting argument). That is, p(z + %+) has double pole at w;/2 and double zero at 0,
while p(z) has the opposite, Thus, in this case

=

p(z+ %) = const X @ (for p(%) = 0)

To determine the constant in the first (general) case, look at the power series expansion near z = 0, to find

w1 w1, ©z)—p(z1)
24+ 2) = (=) 2L for p(“4t 0
plz+5) = o(5) o) — o) (for (%) # 0)
In the special case p(%5-) = 0, because all zeros and poles are already accounted for, (%) # 0 and

p(£1542) £ 0, so we can evaluate at z = wy/2 to determine the constant, and

wi, o) 1
PETT) = ey < o)

The values p(“5+) can be somewhat further elaborated in terms of expressions resembling Eisenstein series,
if desired. ///




