If you want feedback from me on your treatment of these examples, please email your work to me by Friday, Jan 28.

[05.1] Determine partial fraction expansions for \(\frac{1}{\cos^2 \pi x} \) and \(\tan \pi x \).

[05.2] Determine the product expansion for \(\cos \pi x \).

[05.3] Exhibit a meromorphic function on \(\mathbb{C} \) with simple poles at points \(\log n \) for \(n = 1, 2, 3, 4, 5, \ldots \) and no other poles. Also, contemplate the analogous, considerably more difficult, question when the residue is required to be \(1 \) at every pole.

[05.4] Check that the Euclidean Laplacian \(\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} \) on \(\mathbb{R}^n \) is rotation-invariant, in the following sense. A rotation is a linear map \(g : \mathbb{R}^n \to \mathbb{R}^n \) preserving the usual inner product \(\langle x, y \rangle = \sum_i x_i y_i \), and preserving orientations (so \(\det g = 1 \), rather than \(-1 \)). The asserted rotation-invariance is

\[
\Delta(f \circ g) = (\Delta f) \circ g
\]

(for twice-differentiable \(f \) and rotation \(g \)).

(In fact, \(\Delta \) is also preserved by reflections, which are orientation-reversing, so the determinant condition can be safely ignored.)

[05.5] Check that for harmonic \(h \) and holomorphic \(f \), the composition \(h \circ f \) is invariably harmonic, while \(f \circ h \) need not be. (Yes, much of the issue is suitable formulation of the computation.)

[05.6] Show that every harmonic function \(u \) on an annulus \(r < |z| < R \) is of the form

\[
u(z) = a_0 + b_0 \log |z| + \sum_{0 \neq n \in \mathbb{Z}} (a_n z^n + b_n \overline{z}^n)
\]

for constants \(a_i, b_i \). (Hint: Separate variables by writing a Fourier expansion in \(\arg z \), with coefficients depending on the radial coordinate.)

[05.7] (Euler-type equations of second order) An ordinary differential equation of the form

\[
u'' + \frac{b}{x} u' + \frac{c}{x^2} u = 0
\]

with constants \(b, c \) is said to be of Euler type. Show that it has solutions \(x^\alpha \) and \(x^\beta \) where \(\alpha, \beta \) are solutions of the auxiliary equation

\[
\lambda(\lambda - 1) + b\lambda + c = 0
\]

Show that \(x^\alpha \log x \) is the second solution if the root of the auxiliary equation is double, i.e., if \(\alpha = \beta \). Use the Mean Value Theorem to genuinely prove that there are no other solutions.

[05.8] (Rotationally invariant harmonic functions in \(\mathbb{R}^n \)) For \(f \) twice-differentiable on \(\mathbb{R}^n \), expressible as a (twice-differentiable) function of the radius \(r \) alone (at least away from 0), say \(f \) is spherically symmetric or rotationally invariant. (This could also be formulated as invariance under the action of the orthogonal group by rotations). Show that

\[
\Delta f = f'' + \frac{n-1}{r} f'
\]
(This is of Euler type). On \(\mathbb{R}^n - \{0\} \), find two linearly independent harmonic functions.

[05.9] Prove that for non-vanishing entire \(f \), the function \(F(z) = \int_{0}^{z} \frac{f'(w)}{f(w)} \, dw \) is entire, and essentially gives a logarithm of \(f \), in the sense that \(f(z) = e^{C+F(z)} \) for a suitable constant \(C \).

[05.10] Define \(f \) on the unit circle by \(f(e^{i\theta}) = \theta^2 \), for \(-\pi < \theta < \pi\). Find a harmonic function \(u \) on the open disk whose boundary values are \(f \).

[05.11] The Fourier expansion

\[
\delta(\theta) = \sum_{n \in \mathbb{Z}} e^{in\theta} = \sum_{n \in \mathbb{Z}} \hat{\delta}(n) e^{in\theta} \quad \text{(with } \hat{\delta}(n) = 1 \text{ for all } n \in \mathbb{Z})
\]

certainly does not converge pointwise, but does make sense as the expansion of the periodic Dirac \(\delta \), sometimes called Dirac comb function on \(\mathbb{R}/2\pi\mathbb{Z} \), in the following sense. The Plancherel identity

\[
\langle u, v \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} u(\theta) \overline{v(\theta)} \, d\theta = \sum_{n \in \mathbb{Z}} \hat{u}(n) \cdot \overline{\hat{v}(n)} \quad \text{(for } u, v \in L^2(S^1))
\]

\(L^2(S^1) \times L^2(S^1) \to \mathbb{C} \) can be restricted in the first argument and extended in the second, so that for smooth \(u(\theta) = \sum_{n \in \mathbb{Z}} \hat{u}(n) e^{in\theta} \), pairing against \(\delta \) correctly evaluates \(u \) at \(\theta = 0 \):

\[
u(0) = \sum_n \hat{u}(n) e^{i\cdot0} = \sum_n \hat{u}(n) \cdot 1 = \sum_n \hat{u}(n) \cdot \hat{\delta}(n) = \langle u, \delta \rangle
\]

Identifying the circle with the boundary \(\{ z : |z| = 1 \} \) of the disk \(\{ z : |z| < 1 \} \), determine the harmonic function on the disk whose boundary value function is the periodic Dirac \(\delta \).