Complex analysis examples 04

Paul Garrett
garrett@math.umn.edu
http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/complex/examples.2021-22/cx_ex_04.pdf]

If you want feedback from me on your treatment of these examples, please email your work to me by Friday, Dec 03.

[04.1] Prove that, given holomorphic \(f, g \) on a non-empty open set \(U \), and given a simple zero \(z_0 \) of \(f \), for all small-enough complex \(\varepsilon \) there is a unique zero of \(f + \varepsilon g \) nearest \(z_0 \) and it is simple.

[04.2] For small \(w \in \mathbb{C} \), let \(f(w) \) be the simple zero of \(z^5 - z + w = 0 \) near 0. Determine a few terms of the power series expansion of \(f(w) \) at \(w = 0 \).

[04.3] Exhibit a linear fractional transformation mapping 1, 2, 3 to \(z_1, z_2, z_3 \).

[04.4] Exhibit a linear fractional transformation mapping the circle \(|z| = 1 \), minus a point, to the line \(\text{Re}(z) = \text{Im}(z) \).

[04.5] Let \(z, z' \) be points in the open upper half-plane \(\mathcal{H} \). Exhibit a linear fractional transformation stabilizing \(\mathcal{H} \) and mapping \(z \) to \(z' \).

[04.6] Let \(z, z' \) be points in the open unit disk \(\mathcal{D} \). Exhibit a linear fractional transformation stabilizing \(\mathcal{D} \) and mapping \(z \) to \(z' \).

[04.7] Exhibit a conformal map of the open half disk \(\{ z : |z| < 1, \text{Re}(z) > 0 \} \) to the open unit disk.

[04.8] Exhibit a conformal map of the open unit disk with \([0,1) \) removed to the open unit disk.

[04.9] Exhibit a conformal map of the sector \(\{ re^{i\theta} : r > 0, 0 < \theta < \frac{\pi}{4} \} \) to the open unit disk.

[04.10] Exhibit a conformal map from the strip \(\{ z = x + iy : c < ax + by < c' \} \) to the crescent

\[
\Omega = \{ z : |z| < 1, |z - \frac{1}{2}| > \frac{1}{2} \}
\]

[04.11] Let \(f \) be holomorphic on \(\mathbb{C} \), and meromorphic at infinity, with a pole of order \(N \). Show that \(f \) is a polynomial of degree \(N \) (and conversely).

[04.12] Let holomorphic \(f : \mathbb{CP}^1 \to \mathbb{CP}^1 \) be 2-to-1. Show that there are two linear fractional transformations \(\alpha, \beta \) such that \(\alpha \circ f \circ \beta \) is the map \(z \to z^2 \).