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1. Convergence of power series

The point is that power series
∑∞

n=0 cn (z − zo)n with coefficients cn ∈ Z, fixed zo ∈ C, and variable z ∈ C,
converge absolutely and uniformly on a disk in C, as opposed to converging on a more complicated region:

[1.0.1] Theorem: To a power series
∑∞

n=0 cn (z − zo)n is attached a radius of convergence 0 ≤ R ≤ +∞,
such that

|z − zo| < R =⇒
∑
n

cn (z − zo)n converges absolutely

and
|z − zo| > R =⇒

∑
n

cn (z − zo)n diverges

Further, for every r < R,

|z − zo| ≤ r =⇒
∑
n

cn (z − zo)n converges absolutely and uniformly

In particular,

R = lim
n

∣∣∣ cn
cn+1

∣∣∣ (if the limit exists)

In general,

R = lim inf
n

1
n
√
|cn|

= lim
N→∞

inf
n≥N

1
n
√
|cn|

For R = 0 the series converges only for z = zo. For R = +∞ the series converges for all z.

Proof: The conclusion in the simpler case that the indicated limit of ratios exists is reached by the ratio
test, and the general case by a form of the root test, both of which are comparisons to geometric series.

The ratio test uses the limit

lim
n

∣∣∣cn+1 (z − zo)n+1

cn (z − zo)n

∣∣∣ = |z − zo| · lim
n

∣∣∣cn+1

cn

∣∣∣
if it exists. The infinite sum converges absolutely when the limit exists and is < 1:

|z − zo| · lim
n

∣∣∣cn+1

cn

∣∣∣ < 1 =⇒ absolute convergence

Oppositely, when the limit exists and is > 1, the terms do not go to 0, so the series diverges:

|z − zo| · lim
n

∣∣∣cn+1

cn

∣∣∣ > 1 =⇒ divergence
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Similarly, the root test uses [1]

lim sup
n

n
√
|cn (z − zo)n| = |z − zo| · lim sup

n

n
√
|cn|

The infinite sum converges absolutely when the limsup exists and is < 1:

|z − zo| · lim sup
n

n
√
|cn| < 1 =⇒ absolute convergence

Oppositely, when the limitsup is > 1, the terms do not go to 0, so the series diverges:

|z − zo| · · lim sup
n

n
√
|cn| < 1 =⇒ divergence

The extreme cases that the radius of convergence is 0 or +∞ can be treated separately.

The uniformity of the absolute convergence on closed disks |z − zo| ≤ r properly inside |z − zo| < R follows
easily from convergence at every point on the circle |z− zo| = r, namely, for |z− zp| ≤ r, given ε > 0 and N
such that ∑

n≥N

|cn| rn < ε

we immediately have ∑
n≥N

|cn (z − zo)n| ≤
∑
n≥N

|cn| · rn < ε

///

2. Complex differentiation

The same difference-quotient expression as in calculus of a single real variable defines the complex derivative
of a complex-valued function f(z) of a complex variable z: if the limit exists,

f ′(z) = lim
h→0

f(z + h)− f(z)

h
(where h is complex)

The difference is that the limit is required to exist as h ranges over all small complex numbers. And this is
much stronger than the two-dimensional real-variables requirement of differentiability.

The usual algebra shows that complex-coefficiented polynomials and rational functions are complex-
differentiable.

The big surprise about complex differentiability is in Cauchy’s basic theorems (smoothed-out somewhat by
Goursat), which we’ll come to shortly. For the moment, we restrict our attention to some important but less
surprising results due to Abel about complex differentiability and power series.

3. Abel’s theorem: differentiability of power series

[3.0.1] Theorem: (Abel) A power series f(z) =
∑

n≥0 cn (z − zo)n in one complex variable z, absolutely
convergent in an open disk |z − zo| < r, is differentiable on that disk |z − z| < r, and the derivative is given
by the expected (absolutely convergent) series

f ′(z) =
∑
n≥0

ncn z
n−1

[1] Recall that lim supn an = limN supn≥N an.

2



Paul Garrett: Power series (February 14, 2017)

[3.0.2] Corollary: Convergent power series give smooth (infinitely differentiable) functions. ///

[3.0.3] Corollary: Repeatedly differentiating,

f (k)(z) =
∑
n≥0

n(n− 1) . . . (n− k + 1) cn z
n−k

and f (k)(zo) = k(k−1) . . . (k−k+1) ck = k! ck, so the power series coefficients of f(z) are uniquely determined
by the function f . ///

Proof: (of theorem) Without loss of generality, zo = 0. Fix 0 < ρ < r, and |ζ| < ρ, |z| < r. Let

g(z) =
∑
n≥0

ncn z
n−1

Then
f(z)− f(ζ)

z − ζ
− g(ζ) =

∑
n≥1

cn

(
zn − ζn

z − ζ
− nζn−1

)
For n = 1, the expression in the parentheses is 1. For n > 1, it is

zn−1 + zn−2ζ + zn−3ζ2 + . . .+ zζn−2 + ζn−1 − nζn−1

= (zn−1−ζn−1)+(zn−2ζ−ζn−1)+(zn−3ζ2−ζn−1)+ . . .+(z2ζn−3−ζn−1)+(zζn−2−ζn−1)+(ζn−1−ζn−1)

= (z − ζ)
[
(zn−2 + . . .+ ζn−2) + ζ(zn−3 + . . .+ ζn−3) + . . .+ ζn−3(z + ζ) + ζn−2 + 0

]
= (z − ζ)

n−2∑
k=0

(k + 1) zn−2−k ζk

For |z| and |ζ| both smaller than ρ, the latter sum is dominated by

|z − ζ| ρn−2 n(n− 1)

2
< n2 |z − ζ| ρn−2

Thus, ∣∣∣∣f(z)− f(ζ)

z − ζ
− g(ζ)

∣∣∣∣ ≤ |z − ζ|∑
n≥2

|cn|n2 ρn−2

Since ρ < r the latter series converges absolutely, so the left-hand side goes to 0 as z → ζ. ///

4. Abel’s theorem: boundary behavior

The behavior of power series on the circle at the radius of convergence is much more delicate than the
behavior in the interior. The power series itself may converge at no point on the circle, as in the example∑

n≥0

nzn (converges at no point |z| = 1)

or possibly at every point, as in∑
n≥1

zn

n2
(converges at every point |z| = 1)
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or subtle combinations of behaviors due to not-absolute convergence: we can have convergence at all but a
single boundary point, as in∑

n≥1

zn

n
(converges at every point |z| = 1 except z = 1)

We can have divergence at all roots of unity [2] but convergence at many other boundary points, as in

∑
n≥1

zn!

n
(diverges at roots of unity (and elsewhere) but converges at some points)

[4.0.1] Theorem: (Abel) Let f(z) =
∑

n≥0 cn (z − zo)n be a power series with radius of convergence
0 < R < +∞. Let z1 be a point on the circle at the boundary of the radius of convergence, that is,
|z1 − zo| = R. If

∑
n cn converges, then f(z) → f(z1) when z → z1 along a radius of the circle. More

generally, f(z)→ f(z1 when z → z1 non-tangentially (to the circle), that is, so that the angle |z1−z|/(R−|z|)
remains bounded.

[4.0.2] Remark: There is no general assertion of (one-sided) differentiability, and, indeed, any line of
argument that implicitly depends on differentiability is doomed to fail.

Proof: Without loss of generality, zo = 0, R = 1, z1 = 1, and
∑

n cn = 0 (the last by adjusting c0). Let
s = c0 + . . .+ cn and fn(z) =

∑n
i=0 cn z

n be the partial sums. The summation by parts identity is

fn(z) = co + c1z + . . .+ cnz
n = so + (s1 − so)z + (s2 − s1)z2 + . . .+ (sn − sn−1)zn

= so(1− z) + s1(z− z2) + . . .+ sn−1(zn−1− zn) + snz
n = (1− z)

(
so + s1z+ s2z

2 + . . .+ sn−1z
n−1
)

+ snz
n

Since sn → 0, for each fixed z with |z| < 1, snz
n → 0, and

f(z) = lim
n
fn(z) = (1− z)

∞∑
n=0

snz
n (for every |z| < 1)

Given ε > 0, let N be large enough so that |sn| < ε for n ≥ N , so the tail of the sum beyond N is dominated:

∣∣∣ ∞∑
n=N

snz
n
∣∣∣ ≤ ∞∑

n=N

ε|z|n =
ε|z|N

1− |z|
〈 ε

1− |z|

Using an angle restriction |1− z|/(1− |z|) ≤ C < +∞ (when z lies on a radius of the circle, C = 1),

|f(z)| ≤ |1− z|
∣∣∣N−1∑
n=0

snz
n
∣∣∣ + |1− z|

∞∑
n=N

ε|z|n < |1− z|
∣∣∣N−1∑
n=0

snz
n
∣∣∣ + C · ε

Taking |1 − z| sufficiently small makes the first term smaller than ε, so, for z sufficiently close to 1, within
the angle restriction,

|f(z)| < ε+Kε (for all ε > 0)

This holds for all ε > 0, so f(z) = 0. We had rearranged things so that limn sn = 0, so we have the desired
result. ///

[2] A complex root of unity is z ∈ C such that zN = 1 for some positive integer N . After a little study of the

exponential function, we will see that these are dense in the unit circle.
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5. Examples

A preliminary point is that any polynomial in z can easily be rewritten as a polynomial in z − zo, and the
latter is its power series expression at zo.

Less trivially, many important power series are expansions of rational functions, that is, ratios of polynomials,
using the fundamental summation of a geometric series

1

1− z
= 1 + z + z2 + z3 + . . . (for |z| < 1)

sometimes using partial fraction expansions to break the algebra into simpler pieces. For example, for |z| < 1
again,

1

(z − 1)(z − 2)
=
−1

z − 1
+

1

z − 2
=

1

1− z
+
− 1

2

1− z
2

=
(

1 + z + z2 + . . .
)
− 1

2

(
1 +

z

2
+
(z

2

)2
+ . . .

)

= 1
2 +

3

4
z +

7

8
z2 +

15

16
z3 + . . .

For that matter, later thinking in terms of residues will give a more efficient mnemonic for determination of
the coefficients in partial fraction expansions.

Term-wise differentiation produces some interesting identities, with or without thinking about complex
differentiation as opposed to real. For example, a less-familiar power series may be discovered to be an
elementary function:

1 + 2z + 3z2 + 4z3 + 5z4 + . . . =
d

dz

(
1 + z + z2 + z3 + . . .

)
=

d

dz

1

1− z
=

1

(1− z)2

Since Abel’s theorem justifies differentiation of power series term-wise, it also justifies term-wise integration
inside the radius of convergence: first just thinking in terms of real-variable integration rather than path
integrals, ∫ z

0

∑
n≥0

cn w
n dw =

∑
n≥0

cn

∫ z

0

wn dw =
∑
n≥0

cn
n+ 1

zn+1

For example,

arctan z =

∫ z

0

dw

1 + w2
=

∫ z

0

∑
n≥0

(−1)n w2n dw =
∑
n≥0

(−1)n
z2n

2n+ 1
= z − z3

3
+
z5

5
− . . .

The series at z = 1 does converge, conditionally, so Abel’s theorem on boundary values gives a genuine proof
of Leibniz’ identity

π

4
= arctan 1 = 1− 1

3
+

1

5
− 1

7
+ . . .

[iou] more examples
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