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does not converge absolutely, but does converge. Indeed, we can similarly evaluate
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whose convergence follows by integrating by parts.
Finite integrals fOT sing - z® 94
differentiability directly. Since

are holomorphic functions of s when —1 < Re(s), by checking complex
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is a holomorphic function of s in the strip —1 < Re(s) < 1. In particular,
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To evaluate the integral with Re(s) < 0, express sin x in terms of exponentials: this is legitimate for 0 < Re(s)
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at first for Re(A) > 0, by changing variables, and then for A complex with Re(A) > 0 by the identity
principle for analytic functions. Thus, rewrite
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= lim 1( Lls)  T(s) ) = lF(s) (e%s_e—%S) — F(s)-sin(?)
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Observe that both sides of

Recall

/ sinz - 2 df = I(s) ~sin(%) (for 0 < Re(s) < 1)
0

are holomorphic in —1 < Re(s) < 1, since the right-hand side has a removable singularity at s = 0. The
identity principle gives the equality of the two sides in the larger region —1 < Re(s) < 1, notably including
s=0.

The limit s — 0 picks up the pole with residue 1 of I'(s), and the derivative of sin(rs/2) at s = 0, so
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