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1. Maximum modulus principle

Recall that an open subset of a topological space, such as C, is connected if it cannot be expressed as a
disjoint union of two non-empty subsets.

[1.0.1] Theorem: A non-constant f holomorphic on a non-empty, connected open set U ⊂ C, does not
assume its maximum absolute value on U .

Proof: One natural approach is to combine a hypothetical interior maximum of the absolute value with
Cauchy’s formula expressing that interior value in terms of values on a circle enclosing it.

Given zo ∈ U and a neighborhood V of zo, we show that there is z1 ∈ V with |f(z1)| > |f(zo)|. If not, then
|f(z1)| ≤ |f(zo)| for every z1 on a small circle of radius r > 0 about zo fitting inside V . Letting γ be that
circle, traced counter-clockwise, Cauchy’s formula gives an inequality

|f(zo)| =
∣∣∣ 1

2πi

∫
γ

f(w) dw

w − z

∣∣∣ ≤ 1

2π

∫ 2π

0

|f(reit)|
∣∣ d
dtre

it
∣∣ dt

r
=

1

2π

∫ 2π

0

|f(reit)| dt

Since f is continuous, if |f(reit| < |f(zo)| at any single t, then |f(reit
′ | < |f(zo)| for t′ in a small-enough

neighborhood of t ∈ R, and the inequality following from Cauchy’s formula would be impossible.

Thus, to avoid this contradiction, |f(z1)| = |f(zo)| for all z1 on every sufficiently small circle near zo. Thus,
|f(z)| is constant, equal to |f(zo)|, near zo.

Of course, if this constant absolute value is 0, then f is identically 0 on a neighborhood of zo, so is identically
0 on the connected set U , by the identity principle.

If the constant absolute value is not 0, then there is a holomorphic logarithm L defined on a sufficiently small
neighborhood of f(zo), and L(f(z)) is a holomorphic, purely-imaginary-valued function on a neighborhood
of zo. For z in such a small neighborhood of zo,

lim
h→0

L(f(z + h))− L(f(z))

h
= (L ◦ f)′(z) = lim

h→0

L(f(z + ih))− L(f(z))

ih
= (L ◦ f)′(z) (h ∈ R)

That is, the derivative is both real and purely imaginary, so is 0. Thus, L ◦ f is constant. From this, as
usual, by taking a derivative,

0 = (L ◦ f)′(z) = f ′(z) · L′(f(z)) = f ′(z) · 1

f(z)

giving f ′(z) = 0. Thus, an interior maximum absolute value implies that f is constant. ///

[1.0.2] Corollary: Let V ⊂ C be a non-empty connected open with bounded closure V . The sup of non-
constant holomorphic f on V extending continuously to V occurs on the boundary ∂V of V .
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Proof: A continuous function on a compact set assumes its sup. Since f is non-constant, by the theorem
this sup cannot occur in the interior V of V , so must occur on the boundary. ///

2. Open mapping theorem

[2.0.1] Theorem: A non-constant holomorphic function is an open function, in the sense that it maps open
sets to open sets.

Proof: This can be arranged as a corollary of the argument principle.

Let f be holomorphic on a neighborhood U of zo, and let wo = f(zo), and where f(z) − wo has a zero of
multiplicity µ ≥ 1 at zo. We show that f(U) contains a neighborhood of wo, that is, that any w sufficiently
near wo is in f(U). To this end, consider an argument-principle integral which counts the number of zeros
of f(z)− wo inside a small simple closed curve γ around zo:

µ =
1

2πi

∫
γ

d(log
(
f(z)− wo

)
) =

1

2πi

∫
γ

f ′(z) dz

f(z)− wo

The function

g(w) =
1

2πi

∫
γ

f ′(z) dz

f(z)− w

is holomorphic, immediately from the definition of complex differentiability. At the same time, it is integer-
valued, by the argument principle, and takes value µ at wo. Thus, g(w) is constant on a sufficiently small
neighborhood of wo, so takes value ≥ 1 on such a neighborhood. That is, every w in such a neighborhood is
inside f(U). ///

3. Rouché’s theorem

[3.0.1] Theorem: Let f be holomorphic on an open set U containing a simple closed path γ and containing
the interior of γ. Suppose that f does not vanish on the path γ. If another holomorphic function g on U
satisfies

|f(z)− g(z)| < |f(z)| (for all z on γ)

then the number of zeros of g inside γ is the same as the number of zeros of f inside γ.

Proof: The function F = g/f is meromorphic on U since the zeros of f are of finite order and cannot have
an accumulation point in U , by the identity principle. From the given inequality and from the non-vanishing
of f on γ, ∣∣∣1− g(z)

f(z)

∣∣∣ < 1 (for z on γ)

That is, the values of F = g/f along γ stay inside the open disk D of radius 1 centered at 1. In particular,
there is a holomorphic logarithm defined on D, so by Cauchy’s theorem∫

γ

logF (z) dz =

∫
F◦γ

logw dw = 0

On the other hand, by the argument principle,(
number of zeros of F - number of poles of F inside γ

)
=

1

2πi

∫
γ

d(logF (z)) = 0
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That difference is also (
number of zeros of g - number of zeros of f inside γ

)
even if some zeros of g cancel some zeros of f in the quotient F = g/f . Thus, the number of zeros of g inside
γ is the number of zeros of f there. ///

[3.0.2] Corollary: (Continuity of zeros) Let f be a non-constant holomorphic function on an open set U , h
another holomorphic function on U , and zo ∈ U a simple zero of f . Given ε > 0, for sufficiently small δ > 0
there is a unique zero zδ of f + δh such that |zo − zδ| < ε.

Proof: Shrink ε > 0 if necessary so that f has no zeros on the circle of radius ε about zo. That circle is
compact, so the continuous non-zero function z → |f(z)| has a strictly positive minimum m there, and |h(z)|
has a finite maximum M there. With 0 < δ < m

M ,∣∣∣f(z)−
(
f(z) + δh(z)

)∣∣∣ = δ · |h(z)| < m

M
·M ≤ m |f(z)| (for |z − zo| = ε)

By Rouché’s theorem, f + δh has the same number of zeros inside |z − zo| = ε as does f , namely, a single
one. ///
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