(November 6, 2014)

Phragmén-Lindelöf Theorems

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

This document is

http://www.math.umn.edu/~garrett/m/complex/notes_2014-15/05b_phragmen-lindelof.pdf]

The paper that gave its name to these results is

E. Phragmén, E. Lindelöf, Sur une extension d'un principe classique de l'analyse, Acta Math. 31 (1908), 381-406 proved the theorem here.

The maximum modulus principle can easily be misapplied on unbounded open sets. That is, while for an open set $U \subset \mathbb{C}$ with bounded closure \overline{U} , it does follow that the sup of a holomorphic function f on U extending continuously to \overline{U} occurs on the boundary ∂U of U, holomorphic functions on an unbounded set can be bounded by 1 on the edges but be violently unbounded in the interior.

A simple example is $f(z) = e^{e^z}$:

$$\left|e^{e^{x+iy}}\right| = e^{\operatorname{Re}(e^{x+iy})} = e^{e^x \cdot \cos y}$$

On one hand, for fixed y = Im z with $\cos y > 0$, the function blows up as $x = \text{Re } z \to +\infty$. On the other hand, for $\cos y = 0$ the function is *bounded*. Thus, on the strip $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, the function e^{e^z} is bounded on the edges but blows up as $x \to +\infty$.

This example suggests growth conditions under which a bound of 1 on the edges implies the same bound throughout the strip. In fact, the suggested bound is essentially sharp.

[0.0.1] Theorem: For f a holomorphic function on the horizontal half-strip

$$\{z \ : \ -\frac{\pi}{2} \le y \le \frac{\pi}{2} \text{ and } 0 \le x\}$$

satisfying

$$|f(z)| \ll e^{e^{C \cdot \operatorname{Re} z}}$$
 (for some constant $0 \le C < 1$)

 $|f(z)| \ll e^{e^{C \cdot \operatorname{Re} z}} \quad \text{(for some constant } 0 \leq C < 1)$ $|f(z)| \leq 1 \text{ on the edges of the half-strip implies } |f(z)| \leq 1 \text{ in the interior, as well.}$

Proof: Unsurprisingly, the proof is a reduction to the usual maximum modulus principle. Take any fixed D in the range

C < D < 1

The function

$$F_{\varepsilon}(z) = f(z)/e^{\varepsilon e^{D \cdot z}}$$
 (for $\varepsilon > 0$)

is bounded by 1 on the edges of the half-strip, and in the interior goes to 0 uniformly in y as $x \to +\infty$, for fixed $\varepsilon > 0$, exploiting the modification with D. Thus, on a rectangle

$$R_T = \{z : -\frac{\pi}{2} \le y \le \frac{\pi}{2}, \text{ and } 0 \le x \le T\}$$

for sufficiently large T > 0 depending upon ε , the function F_{ε} is bounded by 1 on the edge. The usual maximum modulus principle implies that F_{ε} is bounded by 1 throughout. That is, for each fixed z_o in the half-strip,

 $|f(z_o)| \leq e^{\varepsilon \cdot e^{D\operatorname{Re} z_o}}$ (for all $\varepsilon > 0$)

///

Let $\varepsilon \to 0^+$, giving $|f(z_o)| \le 1$.

[0.0.2] Remark: Analogous theorems on strips of other widths follow by using $e^{c \cdot e^z}$ with suitable constants

An analogous theorem on a full strip, rather than half-strip, follows by using a function like $e^{\cosh z}$ in place of e^{e^z} , as follows.

[0.0.3] Theorem: For f a holomorphic function on the full horizontal strip

$$\{z \ : \ -\frac{\pi}{2} \ \le \ \operatorname{Im} z \ \le \ \frac{\pi}{2}\}$$

satisfying

$$|f(z)| \ll e^{\cosh C \cdot \operatorname{Re} z}$$
 (for some constant $0 \le C < 1$)

 $|f(z)| \le 1$ on the edges of the strip implies $|f(z)| \le 1$ in the interior, as well.

Proof: Again, reduce to the maximum modulus principle. Fix D in the range C < D < 1. The function

$$F_{\varepsilon}(z) = f(z)/e^{\varepsilon \cosh Dz}$$
 (for $\varepsilon > 0$)

is bounded by 1 on the edges of the strip, and in the interior goes to 0 uniformly in y as $x \to \pm \infty$, for fixed $\varepsilon > 0$. Thus, on a rectangle

$$R_T = \{z : -\frac{\pi}{2} \le y \le \frac{\pi}{2}, \text{ and } -T \le x \le T\}$$
 (for large $T > 0$, depending upon ε)

the function F_{ε} is bounded by 1 on the edge. The usual maximum modulus principle implies that F_{ε} is bounded by 1 throughout. That is, for each fixed z_o in the half-strip,

$$|f(z_o)| \leq e^{\varepsilon \cosh D\operatorname{Re} z_o} \qquad (\text{for all } \varepsilon > 0)$$

We can let $\varepsilon \to 0^+$, giving $|f(z_o)| \le 1$.

The details of various adjustments can be made to disappear by strengthening the hypotheses:

[0.0.4] Corollary: Let f be a holomorphic function on a strip or half-strip, with a bound

 $|f(z)| \ll e^{|z|^A}$ (for some A > 0)

If $|f(z)| \le 1$ on the edges of the (half-)strip, then $|f(z)| \le 1$ in the interior, as well. ///

[0.0.5] Remark: Further variations are easily possible, by additional adjustments of functions. For example, polynomial growth of a function f on the edges of a strip or half-strip can be accommodated by considering $f(z)/(z-z_o)^M$ for z_o outside the strip, and large M.

|||