Inverse function theorems

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is

http://www.math.umn.edu/~garrett/m/complex/notes_2014-15/05c_inverse_function.pdf

- 1. Fixed-point lemma
- 2. Smooth inverse function theorem
- 3. Holomorphic inverse function theorem
- **4.** Perturbations $f(z) + h \cdot g(z)$

1. Fixed-point lemma

[1.0.1] Lemma: Let X be a complete metric space with distance function d. Let $f: X \to X$ be a continuous map uniformly contractive in the sense that there is 0 < c < 1 so that $d(fx, fy) \le c \cdot d(x, y)$ for all $x, y \in X$. Then f has a unique fixed point: there is a unique $x \in X$ with f(x) = x. Further, $\lim_{n \to \infty} f^n y = x$ for any $y \in X$.

Proof: First, for any $y \in X$, by repeated application of the triangle inequality,

$$\begin{aligned} d(y, f^n(y)) &\leq d(y, f(y)) + d(f(y), f^2(y)) + d(f^2(y), f^3(y)) \dots + d(f^{n-1}(y), f^n(y)) \\ &\leq (1 + c + c^2 + \dots + c^{n-1}) \cdot d(y, f(y)) &\leq \frac{d(y, f(y))}{1 - c} \end{aligned}$$

Next, claim that for any $y \in X$ the sequence $y, f(y), f^2(y), \ldots$ is Cauchy. Indeed, for $n_o \le m \le n$, using the previous inequality,

$$d(f^{m}(y), f^{n}(y)) \leq c^{n_{o}} \cdot d(f^{m-n_{o}}(y), f^{n-n_{o}}(y)) \leq c^{n_{o}} \cdot c^{m-n_{o}} \cdot d(y, f^{n-m}(y)) \leq c^{n_{o}} \cdot \frac{d(y, f(y))}{1 - c}$$

This goes to 0 as $n_o \to +\infty$, so the sequence is Cauchy.

Similarly, for any y, z in X, with $m \leq n$

$$d(f^{m}(y), f^{n}(z)) \leq c^{m} \cdot d(y, f^{n-m}(z)) \leq c^{m} \cdot \left(d(y, z) + d(z, f^{n-m}(z))\right) \leq c^{m} \cdot \left(d(y, z) + \frac{d(z, f(z))}{1 - c}\right)$$

which goes to 0 as $m \to +\infty$. The limit is the same for y unchanged but z arbitrary. Thus, $z, f(z), f^2(z), \ldots$ has limit x for all $z \in X$. Further, taking z = x, $f^n(x) \to x$. Given $\varepsilon > 0$, take n_o large enough so that $d(f^n(x), x) < \varepsilon$ for $n \ge n_o$. For $n \ge n_o$,

$$d(f(x),x) \ \leq \ d(f(x),f^{n+1}(x)) + d(f^{n+1}(x),x) \ < \ c \cdot d(x,f^n(x)) + \varepsilon \ < \ (c+1) \cdot \varepsilon$$

This holds for all $\varepsilon > 0$, so f(x) = x.

2. Smooth inverse function theorem

The derivative γ' of a smooth function $\gamma:[a,b]\to U\subset\mathbb{R}^n$ is the usual

$$\gamma'(t) = \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h}$$

For this section, the *derivative* f' of an \mathbb{R}^n -valued function on an open $U \subset \mathbb{R}^n$ is the *n*-by-*n*-matrix-valued function so that for every smooth path $\gamma: [a,b] \to U$

$$(f \circ \gamma)'(t) = f'(\gamma(t)) \cdot \gamma'(t)$$
 (matrix multiplication)

Equivalently, for small real $h, x_o \in U$, and $v \in \mathbb{R}^n$, as $h \to 0$, using Landau's little-oh notation, [1]

$$f(x_o + h \cdot v) = f(x) + h \cdot f'(x_o) \cdot v + o(h)$$
 (matrix multiplication)

[2.0.1] Theorem: Let U be an open subset of \mathbb{R}^n and $f: U \to \mathbb{R}^n$ a continuously differentiable function. For $x_0 \in U$ such that $f'(x_0): \mathbb{R}^n \to \mathbb{R}^n$ is a linear isomorphism, there is a neighborhood $V \subset U$ of x_0 so that $f|_V$ has a continuously differentiable inverse on f(V).

Proof: Let $x \to |x|$ be the usual norm on \mathbb{R}^n , and |T| the operator norm^[2] on n-by-n real matrices. Without loss of generality, $x_o = 0$, $f(x_o) = 0$, and $f'(x_o) = f'(0) = 1_n$. Let F(x) = x - f(x), so that F'(0) = 0. By continuity, there is $\delta > 0$ so that $|F'(x)| < \frac{1}{2}$ for $|x| < \delta$.

With g(t) = F(tx) for $t \in [0,1]$, the Mean Value Theorem in one variable gives

$$F(x) = g(1) = g(0) + g'(t)(1-0) = F(0) + F'(tx)(x) = F'(tx)(x)$$
 (for some $0 \le t \le 1$)

so

$$|F(x)| \le |F'(tx)| \cdot |x| \le \frac{1}{2} \cdot |x| \le \frac{\delta}{2}$$
 (for $|x| < \delta$)

Thus, F maps the closed ball B_{δ} of radius δ to the closed ball $B_{\delta/2}$.

We claim that $f(B_{\delta}) \supset B_{\delta/2}$, and that f is injective on $f^{-1}(B_{\delta/2})$. To this end, take $y \in B_{\delta/2}$, and let $\Phi_y(x) = y + F(x) = y + x - f(x)$. For $|y| \leq \delta/2$ and $|x| \leq \delta$, $|\Phi_y(x)| \leq \delta$, so Φ_y is a continuous map of the complete metric space B_{δ} to itself. A similar estimate shows that Φ_y is contractive: letting $g(t) = F((1-t)x_1 + tx_2)$,

$$|\Phi_n(x_2) - \Phi_n(x_1)| = |F(x_2) - F(x_1)| = |g(1) - g(0)| = |g'(t)| \cdot |1 - 0|$$

$$= |F'((1-t)x_1 + tx_2)| \cdot |x_2 - x_1| \le \frac{1}{2} \cdot |x_1 - x_2|$$
 (for given $x_1, x_2 \in B_{\delta}$, for some $0 \le t \le 1$)

By the fixed-point lemma, Φ_y has a unique fixed point x_o , that is,

$$x_o = \Phi_y(x_o) = y + x_o - f(x_o)$$

so x_o is the unique solution in B_δ to the equation $f(x_o) = y$. This proves $f(B_\delta) \supset B_{\delta/2}$ as well as the injectivity on $f^{-1}(B_{\delta/2})$.

^[1] When $f(x)/g(x) \to 0$ as $x \to x_0$, write f(x) = o(g(x)).

^[2] The usual operator norm is $|T| = \sup_{|x| \le 1} |Tx|$.

Paul Garrett: Inverse function theorems (November 20, 2014)

To prove differentiability of the inverse map $\varphi = f^{-1}$, take $x_1, x_2 \in B_\delta$. Continuity of φ follows from

$$|x_1 - x_2| \le |f(x_1) - f(x_2)| + |(x_1 - f(x_1)) - (x_2 - f(x_2))|$$

$$\leq |f(x_1) - f(x_2)| + |F(x_1) - F(x_2)| \leq |f(x_1) - f(x_2)| + \frac{1}{2}|x_1 - x_2|$$

by the inequality $|F(x_1) - F(x_2)| < \frac{1}{2}|x_1 - x_2|$ from above. Subtracting $\frac{1}{2}|x_1 - x_2|$ from both sides,

$$\frac{1}{2}|x_1 - x_2| \le |f(x_1) - f(x_2)|$$

giving continuity of the inverse.

For differentiability, let $y_1 = f(x_1)$ and $y_2 = f(x_2)$ with y_1, y_2 in the interior of $B_{\delta/2}$. Then

$$\varphi(y_1) - \varphi(y_2) - f'(x_2)^{-1}(y_1 - y_2) = x_1 - x_2 - f'(x_2)^{-1}(f(x_1) - f(x_2))$$

$$= x_1 - x_2 - f'(x_2)^{-1} \Big(f'(x_2)(x_1 - x_2) + o(x_1 - x_2) \Big)$$
 (as $x_1 \to x_2$)

$$= x_1 - x_2 - (x_1 - x_2) + o(x_1 - x_2) = o(x_1 - x_2)$$
 (as $x_1 \to x_2$)

By the already-established continuity, this is $o(y_1 - y_2)$. Thus, the inverse φ is differentiable at $y_2 = f(x_2)$, and its derivative is $\varphi'(y_2) = f'(x_2)^{-1}$, for $|y| < \delta/2$.

[2.0.2] Remark: An elaboration of this discussion proves higher-order continuous differentiability in the real-variables sense, but we do not need this for application to the holomorphic inverse function theorem below.

3. Holomorphic inverse function theorem

Now we return to *complex* differentiability.

[3.0.1] Theorem: For f holomorphic on a neighborhood U of z_o and $f'(z_o) \neq 0$, there is a holomorphic inverse function g on a neighborhood of $f(z_o)$, that is, such that $(g \circ f)(z) = z$ and $(f \circ g)(z) = z$.

Proof: The idea is to consider f as a real-differentiable map $f: \mathbb{R}^2 \to \mathbb{R}^2$, obtain a real-differentiable inverse g and then observe that *complex* differentiability of f implies that of g.

The complex differentiability of f can be expressed as

$$f(z_0 + hw) = f(x_0) + hf'(z_0) \cdot w + o(h)$$
 (small real h, complex w)

where $f'(z_o) \cdot w$ denotes multiplication in \mathbb{C} . Separate real and imaginary parts: let $f'(z_o) = a + bi$ with $a, b \in \mathbb{R}$, and w = u + iv with $u, v \in \mathbb{R}$, giving

$$f(z_0 + hw) = f(x_0) + h(a+bi) \cdot (u+iv) + o(h) = f(x_0) + h((au-bv) + i(av+bu)) + o(h)$$

The multiplication in \mathbb{C} is achieved by matrix multiplication of real and imaginary parts:

$$\begin{pmatrix} au - bv \\ av + bu \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

so the real-variable derivative of f at z_o is

$$\begin{pmatrix} \operatorname{Re} f'(z_o) & -\operatorname{Im} f'(z_o) \\ \operatorname{Im} f'(z_o) & \operatorname{Re} f'(z_o) \end{pmatrix}$$

The real-variable derivative has determinant $|f'(z_o)|^2$, so is invertible for $f'(z_o) \neq 0$. Let $\alpha = f'(z_o)$. Thus, there exists a real-differentiable inverse g, with real-variable derivative at $f(z_o)$ given by

$$\begin{pmatrix} \operatorname{Re}\alpha & -\operatorname{Im}\alpha \\ \operatorname{Im}\alpha & \operatorname{Re}\alpha \end{pmatrix}^{-1} = \frac{1}{|\alpha|^2} \begin{pmatrix} \operatorname{Re}\alpha & \operatorname{Im}\alpha \\ -\operatorname{Im}\alpha & \operatorname{Re}\alpha \end{pmatrix} = \begin{pmatrix} \operatorname{Re}(\alpha^{-1}) & -\operatorname{Im}(\alpha^{-1}) \\ \operatorname{Im}(\alpha^{-1}) & \operatorname{Re}(\alpha^{-1}) \end{pmatrix}$$

That is, with $w_o = f(z_o)$,

$$g(w_o + h(u+iv)) = g(w_o) + h(1 i) \begin{pmatrix} \operatorname{Re}\left(\alpha^{-1}\right) & -\operatorname{Im}\left(\alpha^{-1}\right) \\ \operatorname{Im}\left(\alpha^{-1}\right) & \operatorname{Re}\left(\alpha^{-1}\right) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + o(h) = g(w_o) + h\alpha^{-1}(u+iv) + o(h)$$

This holds for all real u, v, so g is complex-differentiable at $f(z_o)$, with complex derivative $1/f'(z_o)$. ///

4. Perturbations $f(z) + h \cdot g(z)$

[4.0.1] Corollary: For f, g holomorphic near z_o , with z_o a simple zero of $f(z_o)$, for all $\varepsilon > 0$ there is $\delta > 0$ such that $f - h \cdot g$ has a zero z_h with $|z_o - z_h| < \varepsilon$, and z_h is a holomorphic function of h.

Proof: In the anomalous case that $g(z_o) = 0$, then $z_h = z_o$ suffices.

For $g(z_o) \neq 0$, solve $f(z) + h \cdot g(z) = 0$ for h:

$$h = \frac{-f(z)}{g(z)}$$

and then

$$h' = \frac{-f'(z)}{g(z)} - \frac{f(z) \cdot g'(z)}{g(z)^2}$$

and

$$h'(z_o) = \frac{-f'(z_o)}{g(z_o)} - \frac{0 \cdot g'(z)}{g(z_o)^2} = \frac{-f'(z_o)}{g(z_o)} \neq 0$$

Apply the holomorphic inverse function theorem to obtain the holomorphic inverse F(h) = z such that $F(0) = z_o$.