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1. Fixed-point lemma

[1.0.1] Lemma: Let X be a complete metric space with distance function d. Let f : X — X be a continuous
map uniformly contractive in the sense that there is 0 < ¢ < 1 so that d(fz, fy) < c¢-d(z,y) for all z,y € X.
Then f has a unique fized point: there is a unique x € X with f(x) = x. Further, lim, . f"y = x for any
yeX.

Proof: First, for any y € X, by repeated application of the triangle inequality,

dy, " (y)) < dly, f(y) +d(f (), f2 (W) +d(f* ). ) - +d(f" (), f" (1))

S (ter o+ dy, fly) < d(gfi{(cy))

Next, claim that for any y € X the sequence y, f(y), f2(y), ... is Cauchy. Indeed, for n, < m < n, using the
previous inequality,

d(y, f(y))

d(f™(y), f"(y)) < " -d(f™ " (y), 1 (y) < e d(y, 1T (y) < et T1-c¢

This goes to 0 as n, — +00, so the sequence is Cauchy.

Similarly, for any y, z in X, with m <n

d(z, f(Z)))

A" (). f1(2) < e dly, 7)) < e (dly,2) +d(, ) < e (dly ) + ST

which goes to 0 as m — +o00. The limit is the same for y unchanged but z arbitrary. Thus, z, f(2), f2(2), ...
has limit = for all z € X. Further, taking z = x, f"(x) — x. Given € > 0, take n, large enough so that
d(f"(x),z) < e for n > n,. For n > n,,

A(f(@) ) < d(f(), £ (@) +d(fH (@), 0) < c-d(@, f1(@) +e < (et 1)

This holds for all € > 0, so f(z) = x. /]
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2. Smooth inverse function theorem

The derivative v’ of a smooth function v : [a,b] = U C R™ is the usual

For this section, the derivative f' of an R™-valued function on an open U C R" is the n-by-n-matrix-valued
function so that for every smooth path v : [a,b] — U

(foy)(t) = F(v®)-+v(t) (matrix multiplication)
Equivalently, for small real h, z, € U, and v € R™, as h — 0, using Landau’s little-oh notation, (1]

f@o+h-v) = f(x)+h- f'(x,) v+ o(h) (matrix multiplication)

[2.0.1] Theorem: Let U be an open subset of R” and f : U — R™ a continuously differentiable function.
For g € U such that f'(xg) : R® — R™ is a linear isomorphism, there is a neighborhood V' C U of z( so
that f|y has a continuously differentiable inverse on f(V).

Proof: Let 2 — || be the usual norm on R™, and |T) the operator norm[2 on n-by-n real matrices. Without
loss of generality, x, = 0, f(x,) =0, and f'(z,) = f'(0) = 1,,. Let F(z) =« — f(x), so that F'(0) = 0. By
continuity, there is § > 0 so that [F'(z)| < 1 for || < 4.

With ¢(t) = F(tz) for ¢t € [0, 1], the Mean Value Theorem in one variable gives
F(x) = g(1) = g(0)+ ¢ () (1 =0) = F(0)+ F'(tz)(z) = F'(tx)(x) (for some 0 <t < 1)

SO
)
[F@)] < [F'(tw)] - J2| < 3-]ef < 3 (for || < 0)

Thus, F' maps the closed ball Bs of radius ¢ to the closed ball B /s.

We claim that f(Bs) D Bs/o, and that f is injective on f’l(B(;/Q. To this end, take y € Bj/o, and
let ®y(z) = y+ F(z) = y+ax— f(z). For |y < /2 and |z| < 9, |[®,(z)] < I, so @, is a continuous
map of the complete metric space Bs to itself. A similar estimate shows that ®, is contractive: letting
g(t) = F((1 — t)zy + txs),

|0y (x2) = @y(21)| = [F(z2) — F(z1)| = |g(1) = g(0)] = [g'(#)|-]1 0]
= |F'((1 = t)ay + taa)| - |z — x1] < § - |z1 — a2 (for given z1,x2 € Bs, for some 0 <t < 1)
By the fixed-point lemma, ®, has a unique fixed point z,, that is,
To = q)y(mo) = Y+ — f(l'o)

so ¥, is the unique solution in Bs to the equation f(x,) = y. This proves f(Bs) D Bs/y as well as the
injectivity on f‘l(B(;/g).

(11 When f(z)/g(x) = 0 as x — xo, write f(z) = o(g(x)).

2] The usual operator norm is |T'| = sup|, <y [TZ|.
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To prove differentiability of the inverse map ¢ = f~1, take x1, 22 € Bs. Continuity of ¢ follows from
lz1 — 22| < [f(21) — f(22)] + |(1U1 - f(xl)) - ($2 — f(xz))|
< [f(@n) = flaz)] + [F(a1) = F(xo)| < [f(a1) = f(z2)] + 3l — o

by the inequality |F(z1) — F(z2)| < 1|21 — 22| from above. Subtracting |z1 — 22| from both sides,

slzr = x| < |f(z1) = f(22)]
giving continuity of the inverse.

For differentiability, let y; = f(21) and y2 = f(22) with y1,y2 in the interior of Bjs/;. Then
o) —¢(y2) = f'(x2) M1 —y2) = @1 — a2 — f'(22) 7 (f (1) = f(x2))

=z —x9 — f(z2)7" (f’(xg)(xl —x9) + o(zy — ;vg)) (as ©1 — x2)
= 11 — 29 — (x1 —x2) + o(x1 —x2) = o(x1 — X2) (as ©1 — x2)
By the already-established continuity, this is o(y1 — y2). Thus, the inverse ¢ is differentiable at yo = f(x2),
and its derivative is ¢/ (y2) = f(z2)7!, for |y| < §/2. ///

[2.0.2] Remark: An elaboration of this discussion proves higher-order continuous differentiability in the
real-variables sense, but we do not need this for application to the holomorphic inverse function theorem
below.

3. Holomorphic inverse function theorem

Now we return to complex differentiability.

[3.0.1] Theorem: For f holomorphic on a neighborhood U of z, and f(z,) # 0, there is a holomorphic
inverse function g on a neighborhood of f(z,), that is, such that (go f)(z) = z and (f o g)(z) = z.

Proof: The idea is to consider f as a real-differentiable map f : R? — R?, obtain a real-differentiable inverse
g and then observe that complex differentiability of f implies that of g.

The complex differentiability of f can be expressed as
f(zo + hw) = f(zo) + hf'(2,) - w+ o(h) (small real h, complex w)

where f(z,) - w denotes multiplication in C. Separate real and imaginary parts: let f'(z,) = a + bi with
a,be R, and w = u + i with u,v € R, giving

f(zo + hw) = f(zo) +h(a+bi)- (u+iv) +o(h) = f(zo)+ h((au—bv) +i(av + bu))) + o(h)
The multiplication in C is achieved by matrix multiplication of real and imaginary parts:
(au - bv) _ <a —b) (u)
av +bu b «a v
so the real-variable derivative of f at z, is

(nf) mertcn)
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The real-variable derivative has determinant |f’(z,)|?, so is invertible for f’(z,) # 0. Let o = f'(2,). Thus,
there exists a real-differentiable inverse g, with real-variable derivative at f(z,) given by

Rea —Ima) 1 Rea Ima) Re(a‘l) —Im(a‘l)
Ima  Rea " o2 \-Ima Rea) = \Im (a‘l) Re (a‘l)
That is, with w, = f(z,),

g(wo + h(u+iv)) = g(w,) +h(17) (iﬁgi:; —Er; gz:ig ) (z) +o(h) = g(w,) +ha "t (u+iv) + o(h)

This holds for all real u,v, so g is comples-differentiable at f(z,), with complex derivative 1/ f'(z,). ///

4. Perturbations f(z) 4+ h - g(2)

[4.0.1] Corollary: For f, g holomorphic near z,, with z, a simple zero of f(z,), for all € > 0 there is § > 0
such that f — h - g has a zero zj, with |z, — 2| < €, and zj, is a holomorphic function of h.

Proof: Tn the anomalous case that g(z,) = 0, then zj, = z, suffices.

For g(z,) # 0, solve f(z) + h-g(z) =0 for h:

_ —f(»)
"= 9(2)
and then
o oI 1) dG)
9(2) 9(2)?
and

P 0g() ()
M) = 5 T dm? T )

Apply the holomorphic inverse function theorem to obtain the holomorphic inverse F'(h) = z such that

F(0) = 2. "

£ 0




