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1. Fixed-point lemma

[1.0.1] Lemma: Let X be a complete metric space with distance function d. Let f : X → X be a continuous
map uniformly contractive in the sense that there is 0 < c < 1 so that d(fx, fy) ≤ c · d(x, y) for all x, y ∈ X.
Then f has a unique fixed point: there is a unique x ∈ X with f(x) = x. Further, limn→∞ fny = x for any
y ∈ X.

Proof: First, for any y ∈ X, by repeated application of the triangle inequality,

d(y, fn(y)) ≤ d(y, f(y)) + d(f(y), f2(y)) + d(f2(y), f3(y)) . . .+ d(fn−1(y), fn(y))

≤ (1 + c+ c2 + . . .+ cn−1) · d(y, f(y)) <
d(y, f(y))

1− c
Next, claim that for any y ∈ X the sequence y, f(y), f2(y), . . . is Cauchy. Indeed, for no ≤ m ≤ n, using the
previous inequality,

d(fm(y), fn(y)) ≤ cno · d(fm−no(y), fn−no(y)) ≤ cno · cm−no · d(y, fn−m(y)) ≤ cno · d(y, f(y))

1− c

This goes to 0 as no → +∞, so the sequence is Cauchy.

Similarly, for any y, z in X, with m ≤ n

d(fm(y), fn(z)) ≤ cm · d(y, fn−m(z)) ≤ cm ·
(
d(y, z) + d(z, fn−m(z))

)
≤ cm ·

(
d(y, z) +

d(z, f(z))

1− c

)
which goes to 0 as m→ +∞. The limit is the same for y unchanged but z arbitrary. Thus, z, f(z), f2(z), . . .
has limit x for all z ∈ X. Further, taking z = x, fn(x) → x. Given ε > 0, take no large enough so that
d(fn(x), x) < ε for n ≥ no. For n ≥ no,

d(f(x), x) ≤ d(f(x), fn+1(x)) + d(fn+1(x), x) < c · d(x, fn(x)) + ε < (c+ 1) · ε

This holds for all ε > 0, so f(x) = x. ///
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2. Smooth inverse function theorem

The derivative γ′ of a smooth function γ : [a, b]→ U ⊂ Rn is the usual

γ′(t) = lim
h→0

γ(t+ h)− γ(t)

h

For this section, the derivative f ′ of an Rn-valued function on an open U ⊂ Rn is the n-by-n-matrix-valued
function so that for every smooth path γ : [a, b]→ U

(f ◦ γ)′(t) = f ′(γ(t)) · γ′(t) (matrix multiplication)

Equivalently, for small real h, xo ∈ U , and v ∈ Rn, as h→ 0, using Landau’s little-oh notation, [1]

f(xo + h · v) = f(x) + h · f ′(xo) · v + o(h) (matrix multiplication)

[2.0.1] Theorem: Let U be an open subset of Rn and f : U → Rn a continuously differentiable function.
For x0 ∈ U such that f ′(x0) : Rn → Rn is a linear isomorphism, there is a neighborhood V ⊂ U of x0 so
that f |V has a continuously differentiable inverse on f(V ).

Proof: Let x→ |x| be the usual norm on Rn, and |T | the operator norm[2] on n-by-n real matrices. Without
loss of generality, xo = 0, f(xo) = 0, and f ′(xo) = f ′(0) = 1n. Let F (x) = x− f(x), so that F ′(0) = 0. By
continuity, there is δ > 0 so that |F ′(x)| < 1

2 for |x| < δ.

With g(t) = F (tx) for t ∈ [0, 1], the Mean Value Theorem in one variable gives

F (x) = g(1) = g(0) + g′(t)(1− 0) = F (0) + F ′(tx)(x) = F ′(tx)(x) (for some 0 ≤ t ≤ 1)

so

|F (x)| ≤ |F ′(tx)| · |x| ≤ 1
2 · |x| ≤

δ

2
(for |x| < δ)

Thus, F maps the closed ball Bδ of radius δ to the closed ball Bδ/2.

We claim that f(Bδ) ⊃ Bδ/2, and that f is injective on f−1(Bδ/2. To this end, take y ∈ Bδ/2, and
let Φy(x) = y + F (x) = y + x − f(x). For |y| ≤ δ/2 and |x| ≤ δ, |Φy(x)| ≤ δ, so Φy is a continuous
map of the complete metric space Bδ to itself. A similar estimate shows that Φy is contractive: letting
g(t) = F ((1− t)x1 + tx2),

|Φy(x2)− Φy(x1)| = |F (x2)− F (x1)| = |g(1)− g(0)| = |g′(t)| · |1− 0|

= |F ′((1− t)x1 + tx2)| · |x2 − x1| ≤ 1
2 · |x1 − x2| (for given x1, x2 ∈ Bδ, for some 0 ≤ t ≤ 1)

By the fixed-point lemma, Φy has a unique fixed point xo, that is,

xo = Φy(xo) = y + xo − f(xo)

so xo is the unique solution in Bδ to the equation f(xo) = y. This proves f(Bδ) ⊃ Bδ/2 as well as the
injectivity on f−1(Bδ/2).

[1] When f(x)/g(x) → 0 as x → xo, write f(x) = o(g(x)).

[2] The usual operator norm is |T | = sup|x|≤1 |Tx|.
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To prove differentiability of the inverse map ϕ = f−1, take x1, x2 ∈ Bδ. Continuity of ϕ follows from

|x1 − x2| ≤ |f(x1)− f(x2)|+
∣∣(x1 − f(x1)

)
−
(
x2 − f(x2)

)∣∣
≤ |f(x1)− f(x2)|+ |F (x1)− F (x2)| ≤ |f(x1)− f(x2)|+ 1

2 |x1 − x2|

by the inequality |F (x1)− F (x2)| < 1
2 |x1 − x2| from above. Subtracting 1

2 |x1 − x2| from both sides,

1
2 |x1 − x2| ≤ |f(x1)− f(x2)|

giving continuity of the inverse.

For differentiability, let y1 = f(x1) and y2 = f(x2) with y1, y2 in the interior of Bδ/2. Then

ϕ(y1)− ϕ(y2)− f ′(x2)−1(y1 − y2) = x1 − x2 − f ′(x2)−1(f(x1)− f(x2))

= x1 − x2 − f ′(x2)−1
(
f ′(x2)(x1 − x2) + o(x1 − x2)

)
(as x1 → x2)

= x1 − x2 − (x1 − x2) + o(x1 − x2) = o(x1 − x2) (as x1 → x2)

By the already-established continuity, this is o(y1 − y2). Thus, the inverse ϕ is differentiable at y2 = f(x2),
and its derivative is ϕ′(y2) = f ′(x2)−1, for |y| < δ/2. ///

[2.0.2] Remark: An elaboration of this discussion proves higher-order continuous differentiability in the
real-variables sense, but we do not need this for application to the holomorphic inverse function theorem
below.

3. Holomorphic inverse function theorem

Now we return to complex differentiability.

[3.0.1] Theorem: For f holomorphic on a neighborhood U of zo and f ′(zo) 6= 0, there is a holomorphic
inverse function g on a neighborhood of f(zo), that is, such that (g ◦ f)(z) = z and (f ◦ g)(z) = z.

Proof: The idea is to consider f as a real-differentiable map f : R2 → R2, obtain a real-differentiable inverse
g and then observe that complex differentiability of f implies that of g.

The complex differentiability of f can be expressed as

f(zo + hw) = f(xo) + hf ′(zo) · w + o(h) (small real h, complex w)

where f ′(zo) · w denotes multiplication in C. Separate real and imaginary parts: let f ′(zo) = a + bi with
a, b ∈ R, and w = u+ iv with u, v ∈ R, giving

f(zo + hw) = f(xo) + h(a+ bi) · (u+ iv) + o(h) = f(xo) + h
(
(au− bv) + i(av + bu)

)
) + o(h)

The multiplication in C is achieved by matrix multiplication of real and imaginary parts:(
au− bv
av + bu

)
=

(
a −b
b a

)(
u
v

)
so the real-variable derivative of f at zo is(

Ref ′(zo) −Imf ′(zo)
Imf ′(zo) Ref ′(zo)

)
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The real-variable derivative has determinant |f ′(zo)|2, so is invertible for f ′(zo) 6= 0. Let α = f ′(zo). Thus,
there exists a real-differentiable inverse g, with real-variable derivative at f(zo) given by(

Reα −Imα
Imα Reα

)−1
=

1

|α|2

(
Reα Imα
−Imα Reα

)
=

(
Re
(
α−1

)
−Im

(
α−1

)
Im
(
α−1

)
Re
(
α−1

))
That is, with wo = f(zo),

g(wo + h(u+ iv)) = g(wo) + h(1 i)

(
Re
(
α−1

)
−Im

(
α−1

)
Im
(
α−1

)
Re
(
α−1

))(u
v

)
+ o(h) = g(wo) + hα−1(u+ iv) + o(h)

This holds for all real u, v, so g is complex-differentiable at f(zo), with complex derivative 1/f ′(zo). ///

4. Perturbations f(z) + h · g(z)

[4.0.1] Corollary: For f, g holomorphic near zo, with zo a simple zero of f(zo), for all ε > 0 there is δ > 0
such that f − h · g has a zero zh with |zo − zh| < ε, and zh is a holomorphic function of h.

Proof: In the anomalous case that g(zo) = 0, then zh = zo suffices.

For g(zo) 6= 0, solve f(z) + h · g(z) = 0 for h:

h =
−f(z)

g(z)

and then

h′ =
−f ′(z)
g(z)

− f(z) · g′(z)
g(z)2

and

h′(zo) =
−f ′(zo)
g(zo)

− 0 · g′(z)
g(zo)2

=
−f ′(zo)
g(zo)

6= 0

Apply the holomorphic inverse function theorem to obtain the holomorphic inverse F (h) = z such that
F (0) = zo. ///
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