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1. The Riemann sphere

One traditional one-point compactification of C can be picturesquely extrinsically described via the
stereographic projection map from the unit sphere S? C R3, with the point (z,y,2) = (0,0,1) removed,
to the z, y-plane. The same device applies to R™, as follows. (1]

The inverse stereographic projection map from R™ to the unit sphere S™ C R™*! sends a point z =
(x1,...,7,) € R™ to the intersection point of the unit sphere S™ C R"! with the line segment connecting
(z,0) = (x1,...,2n,0) to the point p = (0,...,0,1). Formulaically, this is

221 2%y, \x|271>
: — ey , fi = ey e R™
70 = (Gper BT P for &= (@, 7n) € RT)
where |z| = \/2? + ... + 22 as usual. The inverse map is
-1, o y ( Y1 Yn )
: = — =
g (y,Z) (y17 7ynvz) 1— 2 1— 2’ 1= 2

and this certifies that o is a smooth homeomorphism of R™ with S™ — {p}. Certainly S™ is compact.

Thus, the corresponding extrinsic one-point compactification of R™ adjoins a point named oo, and declares
the neighborhoods of oo in R™ U {oo} to be the inverse images o~} (U — {p}) of punctured neighborhoods
U—{p}ofpesm

A local basis at oo consists of sets
{oc}U{z €eR": |2| >} (for r > 0)
[1.0.1] Remark: A notable failing of this extrinsic stereographic compactification of C ~ R? is that it does

not help describe the complex structure at the new point 0o, so that we have no immediate sense of functions’
holomorphy at infinity or meromorphy at infinity.

(1 m general, a one-point compactification of a Hausdorff topological space X can be described intrinsically, without
imbedding in a larger space and without comparison to a pre-existing compact space: let X = XU {o0}, and
neighborhoods of oo are all sets in X of the form X — K where K is a compact subset of X, noting that Hausdorft-
ness implies that compact sets are closed.
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2. The complex projective line CP!
For purposes of complex analysis, a better description of a one-point compactification of C is an instance of
the complex projective space CP™, a compact space containing C", described as follows.

Let ~ be the equivalence relation on C"** — {0} by # ~ y when x = a - y for some o € C*. Thus, z ~ y
means that z and y lie on the same complez line inside C"*'. The complex projective n-space CP™ is the
quotient of C"*1 — {0} by this equivalence relation:

cPr = ((C"'H - {0}) /N ~ {complex lines in C"*1}
Every equivalence class in CP™ has a representative in the sphere $?"*! C C"*!, and the further map to

CP" is continuous, so CP™ is compact.

There is the inclusion C* — CP™ by
z=1(z1,...,2n) — equivalence class of (z1,...,2,,1) = C*-(21,...,2,,1)

The image of C™ in CP™ misses exactly

{1 2,00} [~ ~ P!

For n =1, this is the single point
o = {(z1,0)} [~ ~ CP" ~ {pt}

so CP! is a one-point compactification of C. Otherwise, CP" is strictly bigger than a one-point
compactification.

Homogeneous coordinates on CP" are the coordinates on C"*! for representatives of the quotient. Thus,

for C ¢ CP', the homogeneous coordinates for the image of z are , for example. Going in the other

z
1
direction, given homogeneous coordinates o ) for v # 0, this represents the same equivalence class as does

u{v), which is the image of the point u/v € C. If v = 0, then necessarily u # 0, and (g) ~ (é) is oo,

the point at infinity.

[2.0.1] Remark: This procedure gives CP" a natural complex structure for all n, as illustrated in the n = 1
case just below, in contrast to the stereographic one-point compactification. However, even for n = 1, the
meaning of complex structure will be considered at length only somewhat later, in discussion of (complex-)
one-dimensional complex manifolds, also known as Riemann surfaces.

. , . . e s
3. Functions’ behavior at infinity
At least as a preliminary version, for a function f holomorphic in a region |z| > r
is holomorphic at co <= 2z — f(1/%) is holomorphic at 0
is meromorphic at oo <= 2z — f(1/%) is meromorphic at 0

has an essential singularity at oo <=z — f(1/z) has an essential singularity at 0
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This is consistent with the one-point compactification’s topology, declaring the neighborhoods of co to be
complements of compact subsets of C (with oo added), so mapping z — 1/z maps punctured neighborhoods
of 0 to punctured neighborhoods of oo, and vice-versa.

For example,

behavior of 2z —2? atoo <<= behavior of z — % at 0 (meromorphic)
behavior of 2z — % at oo <= behavior of z — 22 at 0 (holomorphic)
behavior of 2z — Z_i at co << behavior of z — % = }_T_; at 0 (holomorphic)
behavior of 2z —e* atoo <= behavior of z — e!/* = ... + sz +1+1at0 (esssing)

[3.0.1] Claim: The functions holomorphic on the whole CP! are just constants. The functions f

meromorphic on the whole CP! are exactly rational functions f(z) = ggi), with polynomials P, @ and

Q@ not identically 0.

Proof: For f to be holomorphic at oo means that z — f(1/z) is holomorphic near 0. In particular, it is
bounded on some neighborhood |z| < & of 0. Then z — f(z) is bounded on |z| > 1/e. Certainly z — f(2) is
bounded on the compact set |z| < g, so f is bounded and entire, so constant, by Liouville’s theorem.

For f meromorphic at oo, z — f(1/z) has a finite-nosed Laurent expansion at 0, convergent in some
punctured neighborhood,

c
f(l/z):z—%—l—...—i—co—i—clz—i—... (for 0 < |z| < ¢e)

On the compact set |z] < 1/e, f itself can have only finitely-many poles, say at z1,. .., z,, of orders v, ..., v,.
The function g(z) = (z — 21)"* ... (2 — z,)" f(2) has no poles in |z| < 1/e, and g(z) is meromorphic at co,
since each (z — z;)¥9 is meromorphic at co. Then

c
Q(Z):CNZN+-.-+CO+;1+... (for |z| > 1/e)

and 2~ Ng(z) is bounded on |z| > 1/e. The continuous function |g(z)| is certainly bounded on the compact
|z| < 1/e, s0 |g(2)| < B-|z|N for some B and N. As in the proof of Liouville’s theorem, an entire function
admitting such a bound is a polynomial of degree at most N. Thus, the original f was a rational function.

I

4. Linear fractional (Mobius) transformations

The general linear group GLo(C) is the group of multiplicatively invertible two-by-two complex matrices.
This group acts on two-by-one complex matrices C? by matrix multiplication:

a b\ (p) _ ([ap+bg

c d qg)  \ep+dg
The linearity of this action is that g(c-v) = ¢ gv for g € GLy(C), ¢ € C, and v € C?. In particular, the
action of GLo(C) stabilizes the equivalence classes C* - v used to form CP!:

a b . P X ap+bq ek
(c d) <Q> © = (cp+dQ> ¢
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On the image (i) of a point z € C in CP!, in homogeneous coordinates

a b\ (z) _ (az+b
c d 1) \ecz+d
In the typical case that cz +d # 0,

az+b) o _ (8T o = (S o~
(cHd)@ _<1 (cz+d)-C* = (=5 ) .C

That is, the point z € C C CP! is mapped to gzzig € C C CP' when cz+d # 0. When cz +d = 0,

a b z x _ [az+Db x _ [az+Db x _ (1) ~x _
() () e = () e = (7)o = () e =

a b ()_az—|—b
c d Z_cz—l—d

with the implicit qualification that the image is oo when cz + d = 0.

Write

We can see where the point co is mapped:

(2 e () () e - (5) e - <(

. 2 (when d # 0)
(C Z>(OO): ; (when d = 0)

The continuity of the action of GLy(C) on C? results in the continuity of the action of GLy(C) on CP!.

—ale

) -C*  (when d # 0)

—_

O> -C*  (when d =0)

That is,

[4.0.1] Remark: Similarly, GL,(C) acts by generalized linear fractional transformations on CP"~!, by

g11 --- 9in w1 g11w1 + ... + GinWwn
.C* = : -C*

gn1 -+ Gnn Wn, In1Wi +...+ InnWn

[4.0.2] Claim: The holomorphic automorphisms of CP', that is, the meromorphic functions f on C
also meromorophic at infinity, and have inverse maps of the same sort, are exactly the linear fractional
transformations.

Proof: From above, f(z) = P(2)/Q(z) for polynomials P,Q, with @ not identically 0. Without loss of
generality, we can suppose P, @ are relatively prime in the (Euclidean) ring C[X]. If both are constant, then
f is constant, contradicting injectivity.

If @ has positive degree, then it has a zero z,, and f(z,) = co. Let v be a linear fractional transformation
mapping co — z,. Replacing f by f o+, the modified f maps co — co. No other point can be mapped to
o0, by injectivity, so this modified f is be a polynomial.

If the degree of f is greater than 1 and if f has two or more distinct complex zeros, it maps those two points
to 0, contradicting injectivity. Thus, f(z) = c¢(z — 2,)™ for some non-zero ¢ and for some 1 < n € Z. But
this maps 2z, + p to 1 for all n'” roots of unity ju, contradicting injectivity if n > 1. Thus, the modified f is
linear, and is a linear fractional transformation. Thus, the original f was a linear fractional transformation.
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