Compactification: Riemann sphere, projective space

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

This document is

http://www.math.umn.edu/~garrett/m/complex/06_Riemann_sphere.pdf]

- 1. The Riemann sphere
- 2. The complex projective line \mathbb{CP}^1
- 3. Functions' behavior at infinity
- 4. Linear fractional (Möbius) transformations

1. The Riemann sphere

One traditional one-point compactification of \mathbb{C} can be pictures quely extrinsically described via the stereographic projection map from the unit sphere $S^2 \subset \mathbb{R}^3$, with the point (x, y, z) = (0, 0, 1) removed, to the x, y-plane. The same device applies to \mathbb{R}^n , as follows. ^[1]

The *inverse* stereographic projection map from \mathbb{R}^n to the unit sphere $S^n \subset \mathbb{R}^{n+1}$ sends a point $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ to the intersection point of the unit sphere $S^n \subset \mathbb{R}^{n+1}$ with the line segment connecting $(x, 0) = (x_1, \ldots, x_n, 0)$ to the point $p = (0, \ldots, 0, 1)$. Formulaically, this is

$$\sigma : x \longrightarrow \left(\frac{2x_1}{|x|^2 + 1}, \dots, \frac{2x_n}{|x|^2 + 1}, \frac{|x|^2 - 1}{|x|^2 + 1}\right) \qquad \text{(for } x = (x_1, \dots, x_n) \in \mathbb{R}^n\text{)}$$

where $|x| = \sqrt{x_1^2 + \ldots + x_n^2}$ as usual. The inverse map is

$$\sigma^{-1} : (y,z) = (y_1,\ldots,y_n,z) \longrightarrow \frac{y}{1-z} = \left(\frac{y_1}{1-z},\ldots,\frac{y_n}{1-z}\right)$$

and this certifies that σ is a smooth homeomorphism of \mathbb{R}^n with $S^n - \{p\}$. Certainly S^n is compact.

Thus, the corresponding extrinsic one-point compactification of \mathbb{R}^n adjoins a point named ∞ , and declares the neighborhoods of ∞ in $\mathbb{R}^n \cup \{\infty\}$ to be the inverse images $\sigma^{-1}(U - \{p\})$ of punctured neighborhoods $U - \{p\}$ of $p \in S^n$.

A local basis at ∞ consists of sets

$$\{\infty\} \cup \{x \in \mathbb{R}^n : |x| > r\} \qquad (\text{for } r \ge 0)$$

[1.0.1] Remark: A notable failing of this extrinsic stereographic compactification of $\mathbb{C} \approx \mathbb{R}^2$ is that it does not help describe the *complex structure* at the new point ∞ , so that we have no immediate sense of functions' holomorphy at infinity or meromorphy at infinity.

^[1] In general, a one-point compactification of a Hausdorff topological space X can be described intrinsically, without imbedding in a larger space and without comparison to a pre-existing compact space: let $\tilde{X} = X \cup \{\infty\}$, and neighborhoods of ∞ are all sets in \tilde{X} of the form $\tilde{X} - K$ where K is a compact subset of X, noting that Hausdorffness implies that compact sets are closed.

2. The complex projective line \mathbb{CP}^1

For purposes of complex analysis, a better description of a one-point compactification of \mathbb{C} is an instance of the *complex projective space* \mathbb{CP}^n , a compact space containing \mathbb{C}^n , described as follows.

Let \sim be the equivalence relation on $\mathbb{C}^{n+1} - \{0\}$ by $x \sim y$ when $x = \alpha \cdot y$ for some $\alpha \in \mathbb{C}^{\times}$. Thus, $x \sim y$ means that x and y lie on the same *complex line* inside \mathbb{C}^{n+1} . The complex projective *n*-space \mathbb{CP}^n is the quotient of $\mathbb{C}^{n+1} - \{0\}$ by this equivalence relation:

$$\mathbb{CP}^n = (\mathbb{C}^{n+1} - \{0\}) / \sim \approx \{\text{complex lines in } \mathbb{C}^{n+1}\}$$

Every equivalence class in \mathbb{CP}^n has a representative in the sphere $S^{2n+1} \subset \mathbb{C}^{n+1}$, and the further map to \mathbb{CP}^n is *continuous*, so \mathbb{CP}^n is *compact*.

There is the inclusion $\mathbb{C}^n \to \mathbb{CP}^n$ by

$$z = (z_1, \dots, z_n) \longrightarrow$$
 equivalence class of $(z_1, \dots, z_n, 1) = \mathbb{C}^{\times} \cdot (z_1, \dots, z_n, 1)$

The image of \mathbb{C}^n in \mathbb{CP}^n misses exactly

$$\{(z_1,\ldots,z_n,0)\}\Big/\sim \approx \mathbb{CP}^{n-1}$$

For n = 1, this is the single point

$$\infty = \{(z_1, 0)\} / \sim \approx \mathbb{CP}^0 \approx \{\mathrm{pt}\}$$

so \mathbb{CP}^1 is a one-point compactification of \mathbb{C} . Otherwise, \mathbb{CP}^n is strictly bigger than a one-point compactification.

Homogeneous coordinates on \mathbb{CP}^n are the coordinates on \mathbb{C}^{n+1} for representatives of the quotient. Thus, for $\mathbb{C} \subset \mathbb{CP}^1$, the homogeneous coordinates for the image of z are $\begin{pmatrix} z \\ 1 \end{pmatrix}$, for example. Going in the other direction, given homogeneous coordinates $\begin{pmatrix} u \\ v \end{pmatrix}$, for $v \neq 0$, this represents the same equivalence class as does $\begin{pmatrix} u/v \\ 1 \end{pmatrix}$, which is the image of the point $u/v \in \mathbb{C}$. If v = 0, then necessarily $u \neq 0$, and $\begin{pmatrix} u \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is ∞ , the point at infinity.

[2.0.1] Remark: This procedure gives \mathbb{CP}^n a natural *complex structure* for all n, as illustrated in the n = 1 case just below, in contrast to the stereographic one-point compactification. However, even for n = 1, the meaning of *complex structure* will be considered at length only somewhat later, in discussion of (complex-) one-dimensional *complex manifolds*, also known as *Riemann surfaces*.

3. Functions' behavior at infinity

At least as a preliminary version, for a function f holomorphic in a region |z| > r

ſ	is holomorphic at ∞	\iff	$z \to f(1/z)$ is holomorphic at 0
	is meromorphic at ∞	\iff	$z \to f(1/z)$ is meromorphic at 0
has	an essential singularity at ∞	\iff	$z \to f(1/z)$ has an essential singularity at 0

This is consistent with the one-point compactification's topology, declaring the neighborhoods of ∞ to be complements of compact subsets of \mathbb{C} (with ∞ added), so mapping $z \to 1/z$ maps punctured neighborhoods of 0 to punctured neighborhoods of ∞ , and vice-versa.

For example,

[3.0.1] Claim: The functions holomorphic on the whole \mathbb{CP}^1 are just constants. The functions f meromorphic on the whole \mathbb{CP}^1 are exactly rational functions $f(z) = \frac{P(z)}{Q(z)}$, with polynomials P, Q and Q not identically 0.

Proof: For f to be holomorphic at ∞ means that $z \to f(1/z)$ is holomorphic near 0. In particular, it is bounded on some neighborhood $|z| < \varepsilon$ of 0. Then $z \to f(z)$ is bounded on $|z| > 1/\varepsilon$. Certainly $z \to f(z)$ is bounded on the compact set $|z| \le \varepsilon$, so f is bounded and entire, so constant, by Liouville's theorem.

For f meromorphic at ∞ , $z \to f(1/z)$ has a *finite-nosed* Laurent expansion at 0, convergent in some punctured neighborhood,

$$f(1/z) = \frac{c_N}{z^N} + \ldots + c_0 + c_1 z + \ldots$$
 (for $0 < |z| < \varepsilon$)

On the compact set $|z| \leq 1/\varepsilon$, f itself can have only finitely-many poles, say at z_1, \ldots, z_n , of orders ν_1, \ldots, ν_n . The function $g(z) = (z - z_1)^{\nu_1} \ldots (z - z_n)^{\nu_n} f(z)$ has no poles in $|z| \leq 1/\varepsilon$, and g(z) is meromorphic at ∞ , since each $(z - z_j)^{\nu_j}$ is meromorphic at ∞ . Then

$$g(z) = c_N z^N + \ldots + c_0 + \frac{c_1}{z} + \ldots$$
 (for $|z| > 1/\varepsilon$)

and $z^{-N}g(z)$ is bounded on $|z| > 1/\varepsilon$. The continuous function |g(z)| is certainly bounded on the compact $|z| \le 1/\varepsilon$, so $|g(z)| \le B \cdot |z|^N$ for some B and N. As in the proof of Liouville's theorem, an entire function admitting such a bound is a polynomial of degree at most N. Thus, the original f was a rational function.

4. Linear fractional (Möbius) transformations

The general linear group $GL_2(\mathbb{C})$ is the group of multiplicatively invertible two-by-two complex matrices. This group acts on two-by-one complex matrices \mathbb{C}^2 by matrix multiplication:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} ap + bq \\ cp + dq \end{pmatrix}$$

The *linearity* of this action is that $g(c \cdot v) = c \cdot gv$ for $g \in GL_2(\mathbb{C})$, $c \in \mathbb{C}$, and $v \in \mathbb{C}^2$. In particular, the action of $GL_2(\mathbb{C})$ stabilizes the equivalence classes $\mathbb{C}^{\times} \cdot v$ used to form \mathbb{CP}^1 :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} p \\ q \end{pmatrix} \cdot \mathbb{C}^{\times} = \begin{pmatrix} ap + bq \\ cp + dq \end{pmatrix} \cdot \mathbb{C}^{\times}$$

On the image $\begin{pmatrix} z \\ 1 \end{pmatrix}$ of a point $z \in \mathbb{C}$ in \mathbb{CP}^1 , in homogeneous coordinates $\begin{pmatrix} a & b \end{pmatrix} \quad \begin{pmatrix} z \end{pmatrix} \quad \begin{pmatrix} az+b \end{pmatrix}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} az+b \\ cz+d \end{pmatrix}$$

In the typical case that $cz + d \neq 0$,

$$\begin{pmatrix} az+b\\cz+d \end{pmatrix} \cdot \mathbb{C}^{\times} = \begin{pmatrix} \frac{az+b}{cz+d}\\1 \end{pmatrix} \cdot (cz+d) \cdot \mathbb{C}^{\times} = \begin{pmatrix} \frac{az+b}{cz+d}\\1 \end{pmatrix} \cdot \mathbb{C}^{\times}$$

That is, the point $z \in \mathbb{C} \subset \mathbb{CP}^1$ is mapped to $\frac{az+b}{cz+d} \in \mathbb{C} \subset \mathbb{CP}^1$ when $cz + d \neq 0$. When cz + d = 0,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} z \\ 1 \end{pmatrix} \cdot \mathbb{C}^{\times} = \begin{pmatrix} az+b \\ cz+d \end{pmatrix} \cdot \mathbb{C}^{\times} = \begin{pmatrix} az+b \\ 0 \end{pmatrix} \cdot \mathbb{C}^{\times} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \mathbb{C}^{\times} = \infty$$

Write

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}$$

with the implicit qualification that the image is ∞ when cz + d = 0.

We can see where the point ∞ is mapped:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (\infty) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \mathbb{C}^{\times} = \begin{pmatrix} a \\ d \end{pmatrix} \cdot \mathbb{C}^{\times} = \begin{cases} \begin{pmatrix} \frac{a}{d} \\ 1 \end{pmatrix} \cdot \mathbb{C}^{\times} & \text{(when } d \neq 0) \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \mathbb{C}^{\times} & \text{(when } d = 0) \end{cases}$$

That is,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(\infty) = \begin{cases} \frac{a}{d} & (\text{when } d \neq 0) \\ \\ \infty & (\text{when } d = 0) \end{cases}$$

The *continuity* of the action of $GL_2(\mathbb{C})$ on \mathbb{C}^2 results in the continuity of the action of $GL_2(\mathbb{C})$ on \mathbb{CP}^1 .

[4.0.1] Remark: Similarly, $GL_n(\mathbb{C})$ acts by generalized linear fractional transformations on \mathbb{CP}^{n-1} , by

$$\begin{pmatrix} g_{11} & \cdots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{n1} & \cdots & g_{nn} \end{pmatrix} \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix} \cdot \mathbb{C}^{\times} = \begin{pmatrix} g_{11}\omega_1 + \cdots + g_{1n}\omega_n \\ \vdots \\ g_{n1}\omega_1 + \cdots + g_{nn}\omega_n \end{pmatrix} \cdot \mathbb{C}^{\times}$$

[4.0.2] Claim: The holomorphic automorphisms of \mathbb{CP}^1 , that is, the meromorphic functions f on \mathbb{C} also meromorphic at infinity, and have inverse maps of the same sort, are exactly the linear fractional transformations.

Proof: From above, f(z) = P(z)/Q(z) for polynomials P, Q, with Q not identically 0. Without loss of generality, we can suppose P, Q are relatively prime in the (Euclidean) ring $\mathbb{C}[X]$. If both are constant, then f is constant, contradicting injectivity.

If Q has positive degree, then it has a zero z_o , and $f(z_o) = \infty$. Let γ be a linear fractional transformation mapping $\infty \to z_o$. Replacing f by $f \circ \gamma$, the modified f maps $\infty \to \infty$. No other point can be mapped to ∞ , by injectivity, so this modified f is be a polynomial.

If the degree of f is greater than 1 and if f has two or more distinct complex zeros, it maps those two points to 0, contradicting injectivity. Thus, $f(z) = c(z - z_o)^n$ for some non-zero c and for some $1 \le n \in \mathbb{Z}$. But this maps $z_o + \mu$ to 1 for all n^{th} roots of unity μ , contradicting injectivity if n > 1. Thus, the modified f is linear, and is a linear fractional transformation. Thus, the original f was a linear fractional transformation.

|||