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1. Partial fraction expansion
1

sin2 x
=
∑
n∈Z

1

(x− πn)2

2. Partial fraction expansion cotx =
1

z
+
∑
n≥1

( 1

z − n
+

1

z + n

)
3. Product expansion sinx = x ·

∏
n≥1

(
1− x2

π2n2

)
We might want a meromorphic function f on C with poles at a prescribed set {z1, z2, . . .} ⊂ C. More
precisely, we might prescribe pole data at each pole zj , namely, the negative-index Laurent coefficients at zj :
for each pole zj , specify 0 < n ∈ Z and coefficients c−n, c−n+1, . . . , c−1 and require

f(z) =
c−n

(z − zj)n
+

c−n+1

(z − zj)n−1
+ . . .+

c−1
z − zj

+ (holomorphic at zj)

Postponing the general case, we give an illustrative example of special interest. As late as 1735, no one knew
a simpler expression for

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+ . . .

This was the Basel problem, after the Swiss home of the Bernoullis, a dominant force in European
mathematics at the time. L. Euler solved the problem, winning notoriety at an early age, and introducing
a new idea, as follows. Given non-zero numbers a1, . . . , an, a polynomial with constant term 1 having these
numbers as roots is(

1− x

a1

)(
1− x

a2

)
. . .
(

1− x

an

)
= 1− (

1

a1
. . .+

1

an
)x+ (

1

a1a2
+

1

a1a3
+

1

a2a3
+ . . .)x2 + . . .+ (−1)n

xn

a1 . . . an

Imagine that sinπx
πx has an analogous product expansion, in terms of its zeros at ±1,±2,±3, . . ., up to a

normalizing constant needing determination: using the power series expansion of sinx,

(πx)− (πx)3

3! + . . .

πx
=

sinπx

πx
= C ·

∞∏
n=1

(
1− x2

n2
)

= C ·
(
x− x3

∑
n

1

n2
+ . . .

)
Assuming this works, equating constant terms gives C = 1:

sinπx

πx
=

∏
n≥1

(
1− x2

n2

)
Equating coefficients of x2 gives

π2

6
=
∑ 1

n2

Euler only proved this product expansion years later, but the heuristic won him considerable notoriety,
because it suggested an underlying causal mechanism. Further, once observed, the plausibility of the heuristic
is easy to verify numerically.

The product expansion does not overtly mention complex numbers, but its simplest verification is an
application of basic complex analysis: Liouville’s theorem and Laurent expansions near poles. [1]

[1] Weierstraß and Hadamard product expansions apply to general entire functions, but with more overhead than

needed here.
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1. Partial fraction expansion 1
sin2 x

=
∑

n∈Z
1

(x−πn)2

We claim that there is a partial fraction expansion

π2

sin2 πz
=
∑
n∈Z

1

(z − n)2
or, equivalently,

1

sin2 z
=
∑
n∈Z

1

(z − πn)2

First, note that the indicated infinite sums do converge absolutely, uniformly on compacts away from the
poles, so give holomorphic functions away from their poles.

Both sides of the (first) alleged equality have double poles exactly at integers. The Laurent expansion of the
right-hand side near n ∈ Z begins

1

(z − n)2
+ holomorphic

The left-hand side is periodic, so it suffices to see the Laurent expansion near 0:

π2

sin2 πz
=

π2(
πz + (πz)3

3! + . . .
)2 =

1

z2
· 1(

1− π2z2

3! + . . .
)2 =

1

z2
·
(

1 +
π2z2

3!
+ . . .

)2
=

1

z2
+ holomorphic

This Laurent expansion matches that of the partial fraction expansion. Thus,

f(z) =
π2

sin2 πz
−
∑
n∈Z

1

(z − n)2

has no poles in C, so is entire. On the real line, after cancellation of poles, f continuous. The periodicity
f(z + 1) = f(z) is visible, so f is bounded on the real line. In fact, since f is bounded on any region
{x + iy : 0 ≤ x ≤ 1, |y| ≤ N}, the periodicity gives the boundedness of f(z) on every band |y| ≤ N
containing R.

Both parts of f(z) go to 0 as |y| → ∞. Thus, f is bounded and entire, so constant, by Liouville’s theorem.
Since f(z)→ 0 as |y| → ∞, this constant is 0. ///

2. Partial fraction expansion cotx = 1
z
+
∑

n≥1 (
1

z−n +
1

z+n
)

Regroup the partial fraction expansion of π2/ sin2 πx to improve convergence:

π2

sin2 πz
=

1

z2
+
∑
n≥1

( 1

(z − n)2
+

1

(z + n)2

)
The left-hand side is the derivative of −π cotπz, and with the improved convergence the right-hand side is
the obvious termwise derivative: up to a constant C,

π cotπz = C +
1

z
+
∑
n≥1

( 1

z − n
+

1

z + n

)
The identity

1

z − n
+

1

z + n
=

(z + n) + (z − n)

z2 − n2
=

2z

z2 − n2
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certifies that convergence is uniform and absolute, and that the summands are odd functions of z. Everything
but the constant C is odd as a function of z, so C = 0. Thus,

π cotπz =
1

z
+
∑
n≥1

( 1

z − n
+

1

z + n

)

3. Product expansion sinx = x ·
∏

n≥1 (1− x2

π2n2)

Also, π cotπz is the logarithmic derivative of sinπz:

d

dz
log(sinπz) =

(sinπz)′

sinπz
=

π cosπz

sinπz
= π cotπz

Thus,
d

dz
log(sinπz) =

(sinπz)′

sinπz
=

1

z
+
∑
n≥1

( 1

z − n
+

1

z + n

)
We intend to integrate. First, anticipating our goal, note that

d

dz
log
(
1− z

n

)
=
− 1

n

1− z
n

=
1

z − n

Thus, integrating, for some constant C,

log(sinπz) = C + log z +
∑
n≥1

(
log
(
1− z

n

)
+ log

(
1− z

n

))
= C + log z +

∑
n≥1

log
(

1− z2

n2

)
Exponentiating,

sinπz = eC · z ·
∏
n≥1

(
1− z2

n2

)
Looking at the power series at z = 0, we see that eC = π, so

sinπz = πz ·
∏
n≥1

(
1− z2

n2

)
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