
(June 17, 2016)

Harmonic functions, Poisson kernels

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

[This document is
http://www.math.umn.edu/˜garrett/m/complex/notes 2014-15/08c harmonic.pdf]

1. Mean-value property
2. Poisson kernel for disk
3. Dirichlet problem for disk
4. Poisson kernel for upper half-plane

The two-dimensional Euclidean Laplacian is

∆ =
∂2

∂x2
+

∂2

∂y2

Many of these ideas are not specific to two dimensions: the Laplacian on Rn is [1]

∆ =
∂2

∂x21
+ . . .+

∂2

∂x2n

A twice-continuously-differentiable complex-valued function u on a non-empty open set U ⊂ C ≈ R2

satisfying Laplace’s equation ∆u = 0 is also called harmonic. In some contexts, a harmonic function is
understood to be real-valued.

With the notation
∂

∂z
= 1

2

( ∂
∂x
− i ∂

∂y

) ∂

∂z
= 1

2

( ∂
∂x

+ i
∂

∂y

)
we have

∂

∂z
◦ ∂

∂z
=

∂

∂z
◦ ∂

∂z
=

1

4
·∆

A holomorphic function u satisfies the Cauchy-Riemann equation ∂u/∂z = 0, so every holomorphic function
is harmonic. Similarly, every every conjugate-holomorphic function is harmonic. Thus, for holomorphic f ,
the real and imaginary parts

Re(f(z)) = 1
2

(
f(z) + f(z)

)
Im(f(z)) =

1

2i

(
f(z)− f(z)

)
are harmonic, and real-valued.

Harmonic functions have a mean-value property similar to holomorphic functions. This yields the Poisson
formula, recovering interior values from boundary values, much as Cauchy’s formula does for holomorphic
functions. The solution of the Dirichlet problem is a converse: every function on the boundary of a disk arises
as the boundary values of a harmonic function on the disk. We prove this for relatively nice functions on
the boundary, but with adequate set-up the same can be proven for any distribution (generalized function)
on the boundary.

[1] Up to scalar multiples, the Laplacian is the unique second-order differential operator on Rn that is translation-

invariant, rotation-invariant, and annihilates constants. In fact, every translation-invariant and rotation-invariant

differential operator on Rn is a polynomial in the Laplacian. In some natural non-Euclidean spaces there are motion-

invariant differential operators not expressible in terms of the corresponding Laplacian.
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1. Mean-value property

Thus, among other features, in two dimensions harmonic functions form a useful, strictly larger class
of functions including holomorphic functions. For example, harmonic functions still enjoy a mean-value
property, as holomorphic functions do:

[1.0.1] Theorem: (Mean-value property) For harmonic u on a neighborhood of the closed unit disk,

u(0) =
1

2π

∫ 2π

0

u(eiθ) dθ

Proof: Consider the rotation-averaged function

v(z) =
1

2π

∫ 2π

0

u(eiθ · z) dθ (for |z| ≤ 1)

Since the Laplacian ∆ is rotation-invariant, v is a rotation-invariant harmonic function. In polar coordinates,
for rotation-invariant functions v(z) = f(|z|), the Laplacian is

∆v =
( ∂2
∂x2

+
∂2

∂y2

)
f(
√
x2 + y2) =

∂

∂x

( x
|z|
f ′(|z|)

)
+

∂

∂y

( y
|z|
f ′(|z|)

)
=

1

|z|
f ′ − x2

|z|3
f ′ +

x2

|z|2
f ′′ +

1

|z|
f ′ − y2

|z|3
f ′ +

y2

|z|2
f ′′ = f ′′ +

1

|z|
f ′

The ordinary differential equation f ′′ + f ′/r = 0 on an interval (0, R) is an equation of Euler type, meaning
expressible in the form r2f ′′+Brf ′+Cf = 0 with constants B,C. In general, such equations are solved by
letting f(r) = rλ, substituting, dividing through by rλ, and solving the resulting indicial equation for λ:

λ(λ− 1) +Aλ+B = 0

Distinct roots λ1, λ2 of the indicial equation produce linearly independent solutions rλ1 and rλ2 . However,
as in the case at hand, a repeated root λ produces a second solution rλ · log r. Here, the indicial equation
is λ2 = 0, so the general solution is a + b log r. When b 6= 0, the solution a + b log r blows up as r → 0+.
Since f(0) = v(0) = u(0) is finite, it must be that b = 0. Thus, a rotation-invariant harmonic function on
the disk is constant. Thus, its average over a circle is its central value, proving the mean-value property for
harmonic functions. ///

[1.0.2] Remark: One might worry about commutation of the Laplacian with the integration above. In
the first place, it is clear that we must have this commutativity. Second, the best and most final argument
for such is in terms of Gelfand-Pettis (also called weak) integrals of function-valued functions, rather than
temporary elementary arguments.

[1.0.3] Remark: The solutions a+ b log r do indeed exhaust the possible solutions: given f ′′ + f ′/r = 0 on
(0, R), we see r · f ′ is constant because

∂

∂r

(
r · f ′

)
= r · f ′′ + f ′ = r ·

(
− f ′/r

)
+ f ′ = 0

The class of harmonic functions includes useful non-holomorphic real-valued functions. For example, (real-
valued) logarithms of absolute values of non-vanishing holomorphic functions are harmonic:

log |f(z)| = 1
2 ·
(

log f + log f
)

= 1
2 ·
(

holomorphic + anti-holomorphic
)
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so is annihilated by ∆ = 4 ∂
∂z ◦

∂
∂z .

2. Poisson’s formula and kernel for the disk

The mean-value property will yield

[2.0.1] Corollary: (Poisson’s formula) For u harmonic on a neighborhood of the closed unit disk |z| ≤ 1, u
is expressible in terms of its boundary values on |z| = 1 by

u(z) =
1

2π

∫ 2π

0

u(eiθ) · 1− |z|2

|z − eiθ|2
dθ (for |z| < 1)

Up to scalars, the Poisson kernel function is

P (eiθ, z) =
1− |z|2

|z − eiθ|2

Proof: Pre-composition h ◦ f of a harmonic function h with a holomorphic function f yields a harmonic

function. With ϕz the linear fractional transformation given by matrix ϕz ∼
(

1 z
z 1

)
, the mean-value

property for u ◦ ϕz gives

u(z) = (u ◦ ϕz)(0) =
1

2π

∫ 2π

0

(u ◦ ϕz)(eiθ) dθ

Linear fractional transformations stabilizing the unit disk map the unit circle to itself. Replace eiθ by
eiθ

′
= ϕ−1z (eiθ)

u(z) = (u ◦ ϕz)(0) =
1

2π

∫ 2π

0

u(eiθ) dθ′

Computing the change of measure will yield the Poisson formula. This is computed by

ieiθ
′
· ∂θ

′

∂θ
=

∂

∂θ
eiθ

′
=

ieiθ

1− zeiθ
+
izeiθ(eiθ − z)
(1− zeiθ)2

=
ieiθ − ize2iθ + ize2iθ − ieiθ|z|2

(1− zeiθ)2
=

ieiθ(1− |z|2)

(1− zeiθ)2

Thus,
∂θ′

∂θ
=

1

eiθ′
ieiθ(1− |z|2)

(1− zeiθ)2
=

1− zeiθ

eiθ − z
· e

iθ(1− |z|2)

(1− zeiθ)2
=

1− |z|2

|z − eiθ|2

giving the asserted integral. ///

3. Dirichlet problem on the disk

As a sort of converse to the existence of the Poisson formula and Poisson kernel, the Dirichlet problem on the
closed unit disk in C ≈ R2 is posed by specifying of a continuous function f on the circle S1 = {z : |z| = 1},
and asking for harmonic u on |z| < 1, extending to a continuous function on |z| ≤ 1, such that u|S1 = f .
That is, the following asserts that the collection of harmonic functions is a correct collection of functions in
which to pose the problem of reconstituting the interior values of a function from its boundary values, if we
are to have existence and uniqueness. In contrast, the collection of holomorphic functions on a disk is too
small, since the boundary values have Fourier series with no negative terms (see below). On another hand,
any class of functions strictly larger than harmonic functions will include non-zero functions with boundary
values identically 0.
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[3.0.1] Corollary: Given a continuous function f on the circle S1 = {z : |z| = 1}, there is a unique harmonic
function u on the open unit disk extending to a continuous function on the closed unit disk and u|S1 = f .
In particular,

u(z) =
1

2π

∫ 2π

0

f(eiθ) · 1− |z|2

|z − eiθ|2
dθ (for |z| < 1)

For real-valued f , the function u is also real-valued.

Proof: This proof re-discovers the Poisson kernel.

To skirt some secondary analytical complications, suppose that f is at least C1, so that the partial sums of
the Fourier series of f converge uniformly and absolutely pointwise to f , so

f(eit) =
∑
n∈Z

f̂(n) eint = lim
N→∞

∑
|n|≤N

f̂(n) eint

where

f̂(n) =
1

2π

∫ 2π

0

e−inθ f(eiθ) dθ

Note that on |z| = 1 with z = eit we can write

eint =

 zn (for n ≥ 0 and z = eit)

z|n| (for n < 0 and z = eit)

In these terms,

∑
|n|≤N

f̂(n) eint =
∑
|n|≤N

( 1

2π

∫ 2π

0

e−inθ f(eiθ) dθ
)
· eint =

1

2π

∫ 2π

0

f(eiθ)
( ∑
|n|≤N

e−inθ · eint
)
dθ

=
1

2π

∫ 2π

0

f(eiθ)
(1− (ze−iθ)N+1

1− ze−iθ
+
zeiθ − (zeiθ)N+1

1− zeiθ
)
dθ

After moving z to |z| < 1, we can take the limit N →∞, and

∑
n≥0

f̂(n) zn +
∑
n<0

f̂(n) z|n| =
1

2π

∫ 2π

0

f(eiθ)
( 1

1− ze−iθ
+

zeiθ

1− zeiθ
)
dθ

The left-hand side is the sum of an anti-holomorphic and a holomorphic function, so is harmonic. Simplifying
slightly,

1

1− ze−iθ
+

zeiθ

1− zeiθ
=

1− zeiθ + zeiθ − |z|2

|1− ze−iθ|2
=

1− |z|2

|1− ze−iθ|2
=

1− |z|2

|eiθ − z|2
=

1− |z|2

|z − eiθ|2

Thus, ∑
n≥0

f̂(n) zn +
∑
n<0

f̂(n) z|n| =
1

2π

∫ 2π

0

f(eiθ)
1− |z|2

|z − eiθ|2
dθ

To see that we recover the original boundary values, let z = reit with r > 0, so

lim
r→1

1

2π

∫ 2π

0

f(eiθ)
1− |z|2

|z − eiθ|2
dθ = lim

r→1

(∑
n≥0

f̂(n) rn eint +
∑
n<0

f̂(n) r|n| eint
)

=
∑
n

f̂(n)eint = f(eit)

using the good convergence of the Fourier series for f on the circle. ///
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4. Poisson kernel for upper half-plane

Again using the fact that h ◦ f is harmonic for h harmonic and f holomorphic, we can transport the
Poisson kernel P (eiθ, z) for the disk to a Poisson kernel for the upper half-plane H via the Cayley map
C : z → (z + i)/(iz + 1). The Cayley map gives a holomorphic isomorphism of the disk to the upper
half-plane, and of the circle (with i removed) to the real line.

In the relation

u(z) =
1

2π

∫ 2π

0

f(eiθ)P (eiθ, z) dθ

replace z by C−1z with z ∈ H, and replace eiθ by C−1(z) = (t−i)/(−it+1) with t ∈ R: using dθ = d(eiθ)/ieiθ,

(u ◦ C−1)(z) =
1

2π

∫
R

(f ◦ C−1)(t)P (C−1(t), C−1z)
d
(

t−i
−it+1

)
i t−i
−it+1

The change of measure can be determined by the natural computation

(t+ δ)− i
−i(t+ δ) + 1

=
(t+ δ)− i
−it+ 1− iδ

=
(t+ δ)− i

(−it+ 1)(1− iδ(1− it)−1)
=

(t+ δ)− i
−it+ 1

(1− iδ(1− it)−1)−1

=
( t− i
−it+ 1

+
δ

−it+ 1

)(
1 + iδ(1− it)−1 +O(δ2)

)
=

t− i
−it+ 1

+ δ ·
( 1

−it+ 1
+

t− i
−it+ 1

i

−it+ 1

)
+O(δ2)

=
t− i
−it+ 1

+ δ · 2

(−it+ 1)2
+O(δ2)

Thus,

d
(

t−i
−it+1

)
i t−i
−it+1

= dt ·
2

(−it+1)2

i t−i
−it+1

= dt · 2

(1 + it)(1− it)
=

2 dt

1 + t2

With z = x+ iy in H, the Poisson kernel itself becomes

PH(t, x+ iy) = Pdisk(C−1(t), C−1(z)) =
1− |C−1z|2

|C−1z − C−1t|2
=

1−
∣∣ z−i
−iz+1 |

2∣∣ z−i
−iz+1 −

t−i
−it+1

∣∣2
=

|1− it|2 · (|1− iz|2 − |1 + iz|2)∣∣(z − i)(1− it)− (1− iz)(t− i)
∣∣2 =

|1− it|2 ·
((
x2 + (y + 1)2

)
−
(
x2 + (y − 1)2

))∣∣(z − i− itz − t)− (t− itz − i− z)
∣∣2

=
|1− it|2 · 4y

4|z − t|2
=
|1− it|2 · y

(x− t)2 + y2

Thus, with all these coordinate changes,

(u ◦ C−1)(z) =
1

2π

∫
R

(f ◦ C−1)(t)
y

(x− t)2 + y2
2 dt =

1

π

∫
R

(f ◦ C−1)(t)
y

(x− t)2 + y2
dt

That is, replacing f ◦C−1 by f and u◦C−1 by u, for suitable function f on the real line, a harmonic function
u on the upper half-plane with boundary value f on R is given by

u(x+ iy) =
1

π

∫
R
f(t)

y

(x− t)2 + y2
dt (Poisson formula on H)
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