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Apart from factorization of polynomials, after Euler’s

there is Euler’s product for I'(z), which he used as the definition of the Gamma function:

> dt 1
/ e tt? 5 = I'(z) = =
0 zel? | I (1+E>6_Z/”
n
n=1

where the Euler-Mascheroni constant v is essentially defined by this relation. The integral (Euler’s) converges
for Re(z) > 0, while the product (Weierstrass’) converges for all complex z except non-positive integers.
Because the exponential factors are linear, and can cancel,

1 ) 22 z .
W = —22}1[1(1—#) = —_-sinmz

Linear exponential factors are exploited in Riemann’s explicit formula [Riemann 1859], derived from equality
of the Euler product and Hadamard product [Hadamard 1893] for the zeta function ((s) = Y, =& for
Re(s) > 1:
1 eaths s = s
= — . _ 2\ .s/p . ( 7) —s/2n
H 1—p—s <(s) s—1 1:[(1 )e };[1 1+2n6

p prime P

where the product expansion of I'(5) is visible, corresponding to trivial zeros of ((s) at negative even integers,
and p ranges over all other, non-trivial zeros, known to be in the critical strip 0 < Re(s) < 1.

The hard part of the proof (below) of Hadamard’s theorem is essentially that of [Ahlfors 1953/1966], with
various rearrangements. A somewhat different argument is in [Lang 1993]. Some standard folkloric proofs
of supporting facts about harmonic functions are recalled.
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1. Weierstrass products

Given a sequence of complex numbers z; with no accumulation point in C, we will construct an entire
function with zeros exactly the z;.

[1.1] Basic construction

Taylor-MacLaurin polynomials of —log(1 — z) will play a role: let

PnlZ z .
We will exhibit a sequence of integers u% glvmg an absolutely convergent ’LTLﬂTLZt@ p’I"Od’U/Ct vanishing precisely

at the z;, with vanishing at z = 0 accommodated by a suitable leading factor 2™, of the form

P Py > 252 Z3 P
m 1— 7) pn;(2/2) _ m (1_ i) (i o424 )
i ; ( Zj € ? H Zj b Zj * 22]2 + 32?’ et "
J J :

TLij

Absolute convergence of . log(1 + a;) implies absolute convergence of the infinite product [];(1 + a;).
Thus, we show that
Z‘log (1—i) —&-pnj(i)‘ < o0
- Zj Zj
J

Fix a large radius R, keep |z| < R, and ignore the finitely-many z; with |z;| < 2R, so in the following
|z/2;| < 4. Using the power series expansion of log,

z z 1 z |l 1 z |2 1 z/z;| "t z/z;|" L
log(l—*)—pn(—)‘g & JEM 4 < 7 P 75
zj Zj n+1 lz n+2 lz; n+1 1—|z/z] n+1
Thus, we want a sequence of positive integers n; such that
L+l
Z [2/z1 < o0 (with |z| < R)

n;+1
|zj|>2rR 7

The choice of n;’s must be compatible with enlarging R, and this is easily arranged. For example, n; =j—1
succeeds: ) ) . .
z |7 z |7 z |J z |7 .
_ = —| + —_ < ’7 + 2-J
SIE - T T s ¥ ey

|zj|<2R |z;|>2R |zj|<2R 7
Since {z;} is discrete, the sum over |z;| < 2R is finite, giving convergence, and convergence of the infinite
product with n; = j:

z z z 22 z 27
1 7) pi(z/2) _ (1 _ 7) (7 2L E —)
H( ~)e [T(1-2) e Sttt

J J J

[1.2] Canonical products and genus
Given entire f with zeros z; # and a zero of order m at 0, ratios
f(2)
z zZ/zZj
Zm.];[(lzj),epnj(/n

p(z) =

2
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with convergent infinite products are entire, and do not vanish. Non-vanishing entire ¢ has an entire
logarithm:

AOKS
o) = logo(s) = |
o Q)
Thus, non-vanishing entire ¢ is expressible as
o(z) = e9® (with g entire)

Thus, the most general entire function with prescribed zeros is of the form

flz) = 9. m. H (1- i) . ePnj (2/25) (with g entire)
; Zj
J

With fixed f, altering the n; necessitates a corresponding alteration in g.

We are most interested in zeros {z;} allowing a uniform integer h giving convergence of the infinite product
in an expression

2 3 h
— a(x) . m (1_50 prlz/z) — m (1_EJ (i, L E L 37)
f(z) e z H p e z 1:[ - exp - + 22? + 32? +...+ o

J

When f admits such a product expression with a uniform h, a product expression with minimal uniform h
is a canonical product for f.

When, further, the leading factor e9(*) for f has g(2) a polynomial, the genus of f is the maximum of h and
the degree of g.

2. Poisson-Jensen formula

Jensen’s formula and the Poisson-Jensen formula are essential in the difficult half of the Hadamard theorem
(below) comparing genus of an entire function to its order of growth.

The logarithm u(z) = log|f(z)| of the absolute value |f(z)| of a non-vanishing holomorphic function f on a
neighborhood of the unit disk is harmonic, that is, is annihilated by A = 86722 + 6%22: expand

0 g,,0 .0

Aog|f()| = (5, +i5.) (5, ~ i) (3108 £(2) + 108 7 (2))

Conveniently, the two-dimensional Laplacian is the product of the Cauchy-Riemann operator and its
conjugate. Since log f is holomorphic and log f is anti-holomorphic, both are annihilated by the product of
the two linear operators, so log|f(z)| is harmonic.

Thus, log | f(z)| satisfies the mean-value property for harmonic functions

1 27

0 1 o 0
oz | FO)] = 0) = 5= [ u(e o = 5= [ rogls(e)]as

Next, let f have zeros p; in |z| < 1 but none on the unit circle. We manufacture a holomorphic function F
from f but without zeros in |z| < 1, and with |F| = |f| on |z| = 1, by the standard ruse

1-p;z

z=pj

Fz) = £(2)-[1

J
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Indeed, for |z| = 1, the numerator of each factor has the same absolute value as the denominator:

1 1 _ _
z=pil = |2 =7l = m-ll—ijI = [1-p;2|

For simplicity, suppose no p; is 0. Applying the mean-value identity to log |F(z)| gives

1 27 ) 1 2 )
log | £(0) |—Zlog|pj\ = log|F(0)] = g/o log |F(e')| do = %/0 log | f(e)| db

J

and then the basic Jensen’s formula
2 )
el = lowlsl = o [ loalF €@ orlal <

The Poisson-Jensen formula is obtained by replacing 0 by an arbitrary point z inside the unit disk, by
replacing f by f o ¢,, where ¢, is a linear fractional transformation mapping 0 — z and stabilizing [ the

unit disk:
(1 z\ w s w+ z
P==\z 1) Zw + 1

pi=%
—zZp;+1°
integral over the circle, use the Poisson formula for f(z). This gives the basic Poisson-Jensen formula

This replaces the zeros p; by ¢! (p;) = Instead of the mean-value property expressing f(0) as an

Kl

i 1-
log|f(z |—Zlog‘ —Zp; +1‘_7/0 10g|f(€9)|'md9 (for 2| <1, |p;| < 1)

Generally, for holomorphic f on a neighborhood of a disk of radius » > 0 with zeros p; in that disk, apply
the previous to f(r - z) with zeros p;/r in the unit disk:

27 2
0T 1]z
log |f(r-2)| — gj log‘ ij /T—’_l‘ _ 7/ log | f(r - ') - | FEp do (for |z] < 1)
Replacing z by z/r gives
log|f(2) g log ps/r =2/ ‘ = /27r10g|f (re')] - — z/7I° do (for |z] < 1)
—Zp;/r? +1 |2 / [z/r — e

which rearranges to the general Poisson-Jensen formula

1 [ i r? — 2|2
log | /(= \fZIOg\ = /TH] = %/0 log (1) |- 7 g 0 (for [2] <7, [pj] <7)

[ T verify that such maps stabilize the unit disk, expand the natural expression:

w+ z 2
zZw+ 1

= |Zw+1\*2»(\Ew+1|2—|w+z|2) = |Ew+1|*2-<\zw|2+zw+zm+1—|w\2—2w—zw—|z|2>

= w172 (Jawl 1= foff = 52) = w172 0= ) (- o) > 0
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The case z = 0 is the general Jensen formula for arbitrary radius r:

) 1 27 . .
log [£(0)] — Zlog‘%ﬂ’ = %/0 log | f(re')| db (with |p;| <)
J

3. Hadamard products

The order of an entire function f is the smallest positive real A, if it exists, such that, for every € > 0,

| |)\+s

[f(2)] < e”

Recall that, in an infinite product expression with compensating exponential factors with uniform degree h

(for all sufficiently large |z|)

2 3 h

o = et (1= 2o = T2 o (3 Sy s )

Zj

when the exponent g(z) is polynomial, the genus of f is the maximum of h and the degree of g.

[3.0.1] Theorem: (Hadamard) The genus h and order X are related by h < A < h + 1. In particular, one
is finite if and only the other is finite.

Proof: First, the easier half. For f of finite genus h expressed as
f(z) = 9. m H (1 - —) ePn(z/21) = 9(2) . ’"H (1 - —) exp ( AN +...F L)
: Z; 3z3 hzh

the leading exponent is polynomial g of degree at most h, so e9(*) is of order at most h. The order of a
product is at most the maximum of the orders of the factors, so it suffices to prove that the order of the
infinite product is at most h + 1.

The assumption that h is the genus of f is equivalent to
> e <
—_ 00
- |25 [T

We use this to directly estimate the infinite product and show that it has order of growth A < h + 1.

Toward an estimate on Fj,(w) = (1 — w)ePr(®) applicable for all w, not merely for |w| < 1, we collect some
inequalities. There is the basic

h
log | Pu(w)] = Iog (1~ w)em -+ n"] < log| P (w)] + 2 (for all w)
As before, for jw| < 1,
1 1
log | F, < — Mt w2 < P f <1
og|Fr(w)| < 1 |wl te lw[" + . < - (for [w] <1)

This gives (1 — |w]|) - log |Fy,(w)] < |w|"*! for |w| < 1. Adding to the latter the basic relation multiplied by
|w]| gives

1
log [Fh(w)| < w]-log |Fr—1(w)+ (1+ & =) o[ (for fw[ < 1)

5
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In fact, the latter inequality also holds for |w| > 1 and log|F}_1(w)| > 0, from the basic relation. For
log |Fr—1(w)| < 0 and |w| > 1, from the basic relation,

h h
1
log |Fp(w)] < log|Fr—1(w)|+ % < % < (1+ E)|w|thl (for log |Fr—1(w)| < 0 and |w| > 1)
Now prove log |F},(w)| < |w|"*1, by induction on h. For h = 0, from log |z| < |z| — 1,
logll—w| < |1—w|—-1 < 1+w/ -1 = |w|

Assume log |Fj, 1 (w)| <, |w|". For |w| < 1, we reach the desired conclusion by
1 1
tog | Fi(w)] < hl 1o |Fis ()] + (14 )™+ < ol + (14 3 )+ (for u] < 1)

For |w| > 1 and log |F},—1(w)| > 0, from the basic relation

jw]
h

|w]

w
log |[Fi(w)| < log |F—1(w)] + ——

N <p |w|r? (for |w| > 1 and log | Fp_1(w)| > 0)

< fwl" +
For log |Fj—1(w)| < 0 and |w| > 1, from the basic relation we already have

h h
log |Fp(w)] < log|Fpr—1(w)|+ % < % <p |wh (for |w| > 1 and log |Fp—1(w)| < 0)

This proves log | (w)| <, [w]"**! for all w.
Estimate the infinite product:

h+1

z
— < 0

<<hZZ
j

J

z z )
log \ H(l - Zj) epn(z/2)| = Zlog \(1 — Zj) - Pr(2/25)
J J

since Y 1/]z;]"*1 converges. Thus, such an infinite product has growth order A < h + 1.

Now the difficult half of the proof. Let h < A < h + 1. Jensen’s formula will show that the zeros z; are
sufficiently spread out for convergence of 3 1/|z;|"*1. Without loss of generality, suppose f(0) # 0. From

. 1 27 .
loglf(O)Iijlog\if] = 5 | ol ap (with |2] < 7)
certainly
. 1 2m
Z log2 < Z —log‘p—j‘ <. —log|f(0)|+—/ e d) <« e (for every € > 0)
T 2T 0

|zjl<r/2 lpjl<r/2
With v(r) the number of zeros inside the disk of radius r, this gives

v(r)

Jim S = 0 (for all € > 0)
Order the zeros by absolute value: |z1| < |z3| < ... and for simplicity suppose no two have the same size.

Then j = v(|2;]) <. |z|**¢. Thus,

1 1 1
ZW <EZW:ZW

j A+te

6
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The latter converges for iii > 1, that is, for A\+e < h+ 1. When A < h+ 1, there is € > 0 making such an
equality hold.

It remains to show that the entire function ¢g(z) in the leading exponential factor is of degree at most h + 1,
by showing that its (h 4 1) derivative is 0.

In the Poisson-Jensen formula
r2 — |22

_ 1 2 )
S/ A R 1 0y —— 2 gp f
Ezj/r+r’ 27r/0 og|f(re”)| |z — rei?|2 (for [z] <)

application of 3% - ia% annihilates the anti-holomorphic parts, returning us to an equality of holomorphic
functions, as follows. The effect on the integrand is

2(8 ,8) r? — 2|2 -z r? — |z
—_— i : = . __ , ,
oz Ay’ |z — rei?|? (z—re?¥)(z—re ) (z—re?)2(z —re="9)
B 2—|z|2 +zret? —r? 4+ |2|? B ret?
- (z —71ei)2(z —re=®) " (reif — z)2
Thus,
f'(z) 1 Zj 1 [ 0 2ret?
— + —= = — log|f(re'?)| - ————— df
f(2) |z]z;'r z—zj |zjz|;r Zjz — 12 27 Jo (z — rei?)?

Further differentiation h times in z gives

(f’(z))(h) S (=1 3 (—l)hh!~z?+1+(—1)h(h+1)!/QT‘IOg'f(rew)'_ 2re’? &0
( 0

1) o <r )t (Zjz —r2)htt 27 (2 — reif)h+2

lzjl<r
We claim that the second sum and the integral go to 0 as r — +oo.

Regarding the integral, Cauchy’s integral formula gives

2m 0
re
/0 (z — re?)ht2 df =0

Letting M, be the maximum of |f| on the circle of radius r, taking |z| < r/2, up to sign the integral is

am M, 2re'? df I M, pAte 27 ;
1 T . i 1 S — . —— -1 0
/0 % (Fremy)* o retys < +/ 8 ([Fgremy) 2 < / og|f{re™)l df

Jensen’s formula gives

1 27 ;
or [ ~loslfre™)] db < ~log 7(0)
T Jo
Thus, for A + ¢ < h 4 1 the integral goes to 0 as r — +o0.

For the second sum, again take |z| < r/2, so for |z;| <r

_h h
Zj+1 |Zj +1|

| < |23+ 1
(Zjz = r)P = (2 =z

)h+1 < Th+1(?”—‘2j|)h+1 < rh+1

r
2

We already showed that the number v(r) of |z;| < r satisfies limv(r)/r"*1 = 0. Thus, this sum goes to 0 as

r — +o00. Taking the limit,
f’)(h) N 1
— = (=1)"n! —_—
( f ; (2 — 2"+
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Returning to f(z) = e9(*) [aA-2)- ePr(2/23) taking logarithmic derivative gives

Zj

o 1 Ph(2/25)
f_g+zj:(z—zj+ hzj )

and taking h further derivatives gives

I\ () (=1)"h!
<7> = g(h+1) + zj: (Z — Zj)thl

Since the h" derivative of f’/f is the latter sum, gt =0, so g is a polynomial of degree at most h.
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