
(February 23, 2015)

Weierstrass and Hadamard products

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

[This document is
http://www.math.umn.edu/˜garrett/m/complex/notes 2014-15/08d Hadamard products.pdf]

1. Weierstrass products
2. Poisson-Jensen formula
3. Hadamard products

Apart from factorization of polynomials, after Euler’s

sinπz

πz
=

∞∏
n=1

(
1− z2

n2

)
there is Euler’s product for Γ(z), which he used as the definition of the Gamma function:∫ ∞

0

e−t tz
dt

t
= Γ(z) =

1

z eγz
∞∏
n=1

(
1 +

z

n

)
e−z/n

where the Euler-Mascheroni constant γ is essentially defined by this relation. The integral (Euler’s) converges
for Re(z) > 0, while the product (Weierstrass’) converges for all complex z except non-positive integers.
Because the exponential factors are linear, and can cancel,

1

Γ(z) · Γ(−z)
= −z2

∞∏
n=1

(
1− z2

n2

)
= − z

π
· sinπz

Linear exponential factors are exploited in Riemann’s explicit formula [Riemann 1859], derived from equality
of the Euler product and Hadamard product [Hadamard 1893] for the zeta function ζ(s) =

∑
n

1
ns for

Re(s) > 1: ∏
p prime

1

1− p−s
= ζ(s) =

ea+bs

s− 1
·
∏
ρ

(
1− s

ρ

)
es/ρ ·

∞∏
n=1

(
1 +

s

2n

)
e−s/2n

where the product expansion of Γ( s2 ) is visible, corresponding to trivial zeros of ζ(s) at negative even integers,
and ρ ranges over all other, non-trivial zeros, known to be in the critical strip 0 < Re(s) < 1.

The hard part of the proof (below) of Hadamard’s theorem is essentially that of [Ahlfors 1953/1966], with
various rearrangements. A somewhat different argument is in [Lang 1993]. Some standard folkloric proofs
of supporting facts about harmonic functions are recalled.
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1. Weierstrass products

Given a sequence of complex numbers zj with no accumulation point in C, we will construct an entire
function with zeros exactly the zj .

[1.1] Basic construction

Taylor-MacLaurin polynomials of − log(1− z) will play a role: let

pn(z) = z +
z2

2
+
z3

3
+ . . .+

zn

n

We will exhibit a sequence of integers nj giving an absolutely convergent infinite product vanishing precisely
at the zj , with vanishing at z = 0 accommodated by a suitable leading factor zm, of the form

zm
∏
j

(
1− z

zj

)
epnj (z/zj) = zm

∏
j

(
1− z

zj

)
exp

( z
zj

+
z2

2z2j
+

z3

3z3j
+ . . .+

znj

njz
nj
j

)
Absolute convergence of

∑
j log(1 + aj) implies absolute convergence of the infinite product

∏
j(1 + aj).

Thus, we show that ∑
j

∣∣∣ log
(

1− z

zj

)
+ pnj

( z
zj

)∣∣∣ < ∞
Fix a large radius R, keep |z| < R, and ignore the finitely-many zj with |zj | < 2R, so in the following
|z/zj | < 1

2 . Using the power series expansion of log,∣∣∣ log(1− z

zj
)− pn

( z
zj

)∣∣∣ ≤ 1

n+ 1
·
∣∣∣ z
zj

∣∣∣n+1

+
1

n+ 2
·
∣∣∣ z
zj

∣∣∣n+2

+ . . . ≤ 1

n+ 1
· |z/zj |

n+1

1− |z/zj |
≤ 2 · |z/zj |

n+1

n+ 1

Thus, we want a sequence of positive integers nj such that

∑
|zj |≥2R

|z/zj |nj+1

nj + 1
< ∞ (with |z| < R)

The choice of nj ’s must be compatible with enlarging R, and this is easily arranged. For example, nj = j−1
succeeds: ∑

j

∣∣∣ z
zj

∣∣∣j =
∑
|zj |<2R

∣∣∣ z
zj

∣∣∣j +
∑
|zj |≥2R

∣∣∣ z
zj

∣∣∣j ≤ ∑
|zj |<2R

∣∣∣ z
zj

∣∣∣j +
∑
j

2−j

Since {zj} is discrete, the sum over |zj | < 2R is finite, giving convergence, and convergence of the infinite
product with nj = j:

∏
j

(
1− z

zj

)
epj(z/zj) =

∏
j

(
1− z

zj

)
exp

( z
zj

+
z2

2z2j
+

z3

3z3j
+ . . .+

zj

jzj

)

[1.2] Canonical products and genus

Given entire f with zeros zj 6= and a zero of order m at 0, ratios

ϕ(z) =
f(z)

zm ·
∏
j

(
1− z

zj

)
· epnj (z/zj)
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with convergent infinite products are entire, and do not vanish. Non-vanishing entire ϕ has an entire
logarithm:

g(z) = logϕ(z) =

∫ z

0

ϕ′(ζ) dζ

ϕ(ζ)

Thus, non-vanishing entire ϕ is expressible as

ϕ(z) = eg(z) (with g entire)

Thus, the most general entire function with prescribed zeros is of the form

f(z) = eg(z) · zm ·
∏
j

(
1− z

zj

)
· epnj (z/zj) (with g entire)

With fixed f , altering the nj necessitates a corresponding alteration in g.

We are most interested in zeros {zj} allowing a uniform integer h giving convergence of the infinite product
in an expression

f(z) = eg(z) · zm ·
∏
j

(
1− z

zj

)
eph(z/zj) = zm

∏
j

(
1− z

zj

)
exp

( z
zj

+
z2

2z2j
+

z3

3z3j
+ . . .+

zh

hzh

)
When f admits such a product expression with a uniform h, a product expression with minimal uniform h
is a canonical product for f .

When, further, the leading factor eg(z) for f has g(z) a polynomial, the genus of f is the maximum of h and
the degree of g.

2. Poisson-Jensen formula

Jensen’s formula and the Poisson-Jensen formula are essential in the difficult half of the Hadamard theorem
(below) comparing genus of an entire function to its order of growth.

The logarithm u(z) = log |f(z)| of the absolute value |f(z)| of a non-vanishing holomorphic function f on a

neighborhood of the unit disk is harmonic, that is, is annihilated by ∆ = ∂2

∂x2 + ∂2

∂y2 : expand

∆ log |f(z)| =
( ∂
∂x

+ i
∂

∂y

)( ∂
∂x
− i ∂

∂y

)(
1
2 log f(z) + 1

2 log f (z)
)

Conveniently, the two-dimensional Laplacian is the product of the Cauchy-Riemann operator and its
conjugate. Since log f is holomorphic and log f is anti-holomorphic, both are annihilated by the product of
the two linear operators, so log |f(z)| is harmonic.

Thus, log |f(z)| satisfies the mean-value property for harmonic functions

log |f(0)| = u(0) =
1

2π

∫ 2π

0

u(eiθ) dθ =
1

2π

∫ 2π

0

log |f(eiθ)| dθ

Next, let f have zeros ρj in |z| < 1 but none on the unit circle. We manufacture a holomorphic function F
from f but without zeros in |z| < 1, and with |F | = |f | on |z| = 1, by the standard ruse

F (z) = f(z) ·
∏
j

1− ρjz
z − ρj

3



Paul Garrett: Weierstrass and Hadamard products (February 23, 2015)

Indeed, for |z| = 1, the numerator of each factor has the same absolute value as the denominator:

|z − ρj | = |1
z
− ρj | =

1

|z|
· |1− ρjz| = |1− ρjz|

For simplicity, suppose no ρj is 0. Applying the mean-value identity to log |F (z)| gives

log |f(0)| −
∑
j

log |ρj | = log |F (0)| =
1

2π

∫ 2π

0

log |F (eiθ)| dθ =
1

2π

∫ 2π

0

log |f(eiθ)| dθ

and then the basic Jensen’s formula

log |f(0)| −
∑
j

log |ρj | =
1

2π

∫ 2π

0

log |f(eiθ)| dθ (for |ρj | < 1)

The Poisson-Jensen formula is obtained by replacing 0 by an arbitrary point z inside the unit disk, by
replacing f by f ◦ ϕz, where ϕz is a linear fractional transformation mapping 0 → z and stabilizing [1] the
unit disk:

ϕz =

(
1 z
z 1

)
: w −→ w + z

zw + 1

This replaces the zeros ρj by ϕ−1z (ρj) =
ρj−z
−zρj+1 . Instead of the mean-value property expressing f(0) as an

integral over the circle, use the Poisson formula for f(z). This gives the basic Poisson-Jensen formula

log |f(z)| −
∑
j

log
∣∣∣ ρj − z
−zρj + 1

∣∣∣ =
1

2π

∫ 2π

0

log |f(eiθ)| · 1− |z|2

|z − eiθ|2
dθ (for |z| < 1, |ρj | < 1)

Generally, for holomorphic f on a neighborhood of a disk of radius r > 0 with zeros ρj in that disk, apply
the previous to f(r · z) with zeros ρj/r in the unit disk:

log |f(r · z)| −
∑
j

log
∣∣∣ ρj/r − z
−zρj/r + 1

∣∣∣ =
1

2π

∫ 2π

0

log |f(r · eiθ)| · 1− |z|2

|z − eiθ|2
dθ (for |z| < 1)

Replacing z by z/r gives

log |f(z)| −
∑
j

log
∣∣∣ ρj/r − z/r−zρj/r2 + 1

∣∣∣ =
1

2π

∫ 2π

0

log |f(reiθ)| · 1− |z/r|2

|z/r − eiθ|2
dθ (for |z| < r)

which rearranges to the general Poisson-Jensen formula

log |f(z)| −
∑
j

log
∣∣∣ ρj − z
−zρj/r + r

∣∣∣ =
1

2π

∫ 2π

0

log |f(reiθ)| · r
2 − |z|2

|z − reiθ|2
dθ (for |z| < r, |ρj | < r)

[1] To verify that such maps stabilize the unit disk, expand the natural expression:

1−
∣∣∣∣ w + z

zw + 1

∣∣∣∣2 = |zw+1|−2 ·
(
|zw+1|2− |w+ z|2

)
= |zw+1|−2 ·

(
|zw|2 + zw+ zw+1− |w|2− zw− zw− |z|2

)

= |zw + 1|−2 ·
(
|zw|2 + 1− |w|2 − |z|2

)
= |zw + 1|−2 · (1− |z|2) · (1− |w|2) > 0
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The case z = 0 is the general Jensen formula for arbitrary radius r:

log |f(0)| −
∑
j

log
∣∣∣ρj
r

∣∣∣ =
1

2π

∫ 2π

0

log |f(reiθ)| dθ (with |ρj | < r)

3. Hadamard products

The order of an entire function f is the smallest positive real λ, if it exists, such that, for every ε > 0,

|f(z)| ≤ e|z|
λ+ε

(for all sufficiently large |z|)

Recall that, in an infinite product expression with compensating exponential factors with uniform degree h

f(z) = eg(z) · zm ·
∏
j

(
1− z

zj

)
eph(z/zj) = zm

∏
j

(
1− z

zj

)
exp

( z
zj

+
z2

2z2j
+

z3

3z3j
+ . . .+

zh

hzh

)
when the exponent g(z) is polynomial, the genus of f is the maximum of h and the degree of g.

[3.0.1] Theorem: (Hadamard) The genus h and order λ are related by h ≤ λ < h + 1. In particular, one
is finite if and only the other is finite.

Proof: First, the easier half. For f of finite genus h expressed as

f(z) = eg(z) · zm
∏
j

(
1− z

zj

)
eph(z/zj) = eg(z) · zm

∏
j

(
1− z

zj

)
exp

( z
zj

+
z2

2z2j
+

z3

3z3j
+ . . .+

zh

hzh

)
the leading exponent is polynomial g of degree at most h, so eg(z) is of order at most h. The order of a
product is at most the maximum of the orders of the factors, so it suffices to prove that the order of the
infinite product is at most h+ 1.

The assumption that h is the genus of f is equivalent to∑
j

1

|zj |h+1
< ∞

We use this to directly estimate the infinite product and show that it has order of growth λ < h+ 1.

Toward an estimate on Fh(w) = (1− w)eph(w) applicable for all w, not merely for |w| < 1, we collect some
inequalities. There is the basic

log |Fh(w)| = log |(1− w)eph−1(w) · ew
h/h| ≤ log |Fh−1(w)|+ |w|

h

h
(for all w)

As before, for |w| < 1,

log |Fh(w)| ≤ 1

h+ 1
· |w|h+1 +

1

h+ 2
· |w|h+2 + . . . ≤ |w|h+1 · 1

1− |w|
(for |w| < 1)

This gives (1− |w|) · log |Fh(w)| ≤ |w|h+1 for |w| < 1. Adding to the latter the basic relation multiplied by
|w| gives

log |Fh(w)| ≤ |w| · log |Fh−1(w)|+
(
1 +

1

h

)
|w|h+1 (for |w| < 1)
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In fact, the latter inequality also holds for |w| ≥ 1 and log |Fh−1(w)| ≥ 0, from the basic relation. For
log |Fh−1(w)| < 0 and |w| ≥ 1, from the basic relation,

log |Fh(w)| ≤ log |Fh−1(w)|+ |w|
h

h
≤ |w|

h

h
≤
(
1 +

1

h

)
|w|h+1 (for log |Fh−1(w)| < 0 and |w| ≥ 1)

Now prove log |Fh(w)| �h |w|h+1, by induction on h. For h = 0, from log |x| ≤ |x| − 1,

log |1− w| ≤ |1− w| − 1 ≤ 1 + |w| − 1 = |w|

Assume log |Fh−1(w)| �h |w|h. For |w| < 1, we reach the desired conclusion by

log |Fh(w)| ≤ |w| · log |Fh−1(w)|+
(
1 +

1

h

)
|w|h+1 �h |w| · |w|h +

(
1 +

1

h

)
|w|h+1 (for |w| < 1)

For |w| ≥ 1 and log |Fh−1(w)| > 0, from the basic relation

log |Fh(w)| ≤ log |Fh−1(w)|+ |w|
h

h
�h |w|h +

|w|h

h
�h |w|h+1 (for |w| ≥ 1 and log |Fh−1(w)| > 0)

For log |Fh−1(w)| ≤ 0 and |w| ≥ 1, from the basic relation we already have

log |Fh(w)| ≤ log |Fh−1(w)|+ |w|
h

h
≤ |w|

h

h
�h |w|h+1 (for |w| ≥ 1 and log |Fh−1(w)| < 0)

This proves log |Fh(w)| �h |w|h+1 for all w.

Estimate the infinite product:

log
∣∣∣∏
j

(1− z

zj
) · eph(z/zj)

∣∣∣ =
∑
j

log
∣∣∣(1− z

zj
) · eph(z/zj)

∣∣∣ �h

∑
j

∣∣∣ z
zj

∣∣∣h+1

< ∞

since
∑

1/|zj |h+1 converges. Thus, such an infinite product has growth order λ ≤ h+ 1.

Now the difficult half of the proof. Let h ≤ λ < h + 1. Jensen’s formula will show that the zeros zj are
sufficiently spread out for convergence of

∑
1/|zj |h+1. Without loss of generality, suppose f(0) 6= 0. From

log |f(0)| −
∑
j

log
∣∣∣zj
r

∣∣∣ =
1

2π

∫ 2π

0

log |f(reiθ)| dθ (with |zj | < r)

certainly

∑
|zj |<r/2

log 2 ≤
∑

|ρj |<r/2

− log
∣∣∣ρj
r

∣∣∣ �ε − log |f(0)|+ 1

2π

∫ 2π

0

rλ+ε dθ � rλ+ε (for every ε > 0)

With ν(r) the number of zeros inside the disk of radius r, this gives

lim
r→+∞

ν(r)

rλ+ε
= 0 (for all ε > 0)

Order the zeros by absolute value: |z1| ≤ |z2| ≤ . . . and for simplicity suppose no two have the same size.
Then j = ν(|zj |)�ε |z|λ+ε. Thus,

∑ 1

|zj |h+1
�ε

∑ 1

(j
1

λ+ε )h+1
=
∑ 1

j
h+1
λ+ε

6
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The latter converges for h+1
λ+ε > 1, that is, for λ+ ε < h+ 1. When λ < h+ 1, there is ε > 0 making such an

equality hold.

It remains to show that the entire function g(z) in the leading exponential factor is of degree at most h+ 1,
by showing that its (h+ 1)th derivative is 0.

In the Poisson-Jensen formula

log |f(z)| −
∑
|zj |<r

log
∣∣∣ zj − z
−zzj/r + r

∣∣∣ =
1

2π

∫ 2π

0

log |f(reiθ)| · r
2 − |z|2

|z − reiθ|2
dθ (for |z| < r)

application of ∂
∂x − i

∂
∂y annihilates the anti-holomorphic parts, returning us to an equality of holomorphic

functions, as follows. The effect on the integrand is

2
( ∂
∂x
− i ∂

∂y

) r2 − |z|2
|z − reiθ|2

= 2
−z

(z − reiθ)(z − re−iθ)
− r2 − |z|2

(z − reiθ)2(z − re−iθ)

= 2
−|z|2 + zreiθ − r2 + |z|2

(z − reiθ)2(z − re−iθ)
= 2

reiθ

(reiθ − z)2

Thus,
f ′(z)

f(z)
−
∑
|zj |<r

1

z − zj
+
∑
|zj |<r

zj
zjz − r2

=
1

2π

∫ 2π

0

log |f(reiθ)| · 2reiθ

(z − reiθ)2
dθ

Further differentiation h times in z gives

(f ′(z)
f(z)

)(h)
=

∑
|zj |<r

(−1)hh!

(z − zj)h+1
−
∑
|zj |<r

(−1)hh! · zh+1
j

(zjz − r2)h+1
+

(−1)h(h+ 1)!

2π

∫ 2π

0

log |f(reiθ)| · 2reiθ

(z − reiθ)h+2
dθ

We claim that the second sum and the integral go to 0 as r → +∞.

Regarding the integral, Cauchy’s integral formula gives∫ 2π

0

reiθ

(z − reiθ)h+2
dθ = 0

Letting Mr be the maximum of |f | on the circle of radius r, taking |z| < r/2, up to sign the integral is∫ 2π

0

log
( Mr

|f(reiθ)|

)
· 2reiθ dθ

(z − reiθ)h+2
� 1

rh+1

∫ 2π

0

log
( Mr

|f(reiθ)|

)
dθ �ε

rλ+ε

rh+1
·
∫ 2π

0

− log |f(reiθ)| dθ

Jensen’s formula gives
1

2π

∫ 2π

0

− log |f(reiθ)| dθ ≤ − log |f(0)|

Thus, for λ+ ε < h+ 1 the integral goes to 0 as r → +∞.

For the second sum, again take |z| < r/2, so for |zj | < r

∣∣∣ zh+1
j

(zjz − r2)h+1

∣∣∣ ≤ |zh+1
j |

(r2 − |zj | · r2 )h+1
�

|zh+1
j |

rh+1(r − |zj |)h+1
� 1

rh+1

We already showed that the number ν(r) of |zj | < r satisfies lim ν(r)/rh+1 = 0. Thus, this sum goes to 0 as
r → +∞. Taking the limit, (f ′

f

)(h)
= (−1)hh!

∑
j

1

(z − zj)h+1

7
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Returning to f(z) = eg(z)
∏
j(1−

z
zj

) · eph(z/zj), taking logarithmic derivative gives

f ′

f
= g′ +

∑
j

( 1

z − zj
+
p′h(z/zj)

zj

)
and taking h further derivatives gives

(f ′
f

)(h)
= g(h+1) +

∑
j

(−1)hh!

(z − zj)h+1

Since the hth derivative of f ′/f is the latter sum, g(h+1) = 0, so g is a polynomial of degree at most h.
///
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