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The Heisenberg Uncertainty Principle is a theorem about Fourier transforms. [1]
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Next,
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∫
R
|xf · f ′| ≤ 2 · |xf |L2 · |f ′|L2 (Cauchy-Schwarz-Bunyakowsky)

Since Fourier transform is an isometry, and since Fourier transform converts derivatives to multiplications,

|f ′|L2 = |f̂ ′|L2 = 2π|ξf̂ |L2

Thus, we obtain the Heisenberg inequality

|f |2L2 ≤ 4π · |xf |L2 · |ξf̂ |L2

More generally, a similar argument gives, for any xo ∈ R and any ξo ∈ R,

|f |2L2 ≤ 4π · |(x− xo)f |L2 · |(ξ − ξo)f̂ |L2

Imagining that f(x) is the probability that a particle’s position is x, and f̂(ξ) is the probability that its
momentum is ξ, Heisenberg’s inequality gives a lower bound on how spread out these two probability
distributions must be. The physical assumption is that position and momentum are related by Fourier
transform.

[1] I think I first saw Heisenberg’s Uncertainty Principle presented directly as a theorem about Fourier transforms

in Folland’s 1983 Tata Lectures on PDE.
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