(March 26, 2015)

Infinitude of zeros in the critical strip

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is

http://www.math.umn.edu/~garrett/m/complex/notes_2014-15/09g_infinitude_of_zeros.pdf]

Hadamard's theorem on canonical products yields a short proof that $\zeta(s)$ has infinitely-many zeros in the critical strip $0 \leq (\text{Re}(s) \leq 1$. This is essentially an echo of [Titchmarsh 1986], page 30, and some background.

Hadamard's product theorem, for growth order $\lambda \in \mathbb{R}$, asserts that for the integer h satisfying $h \leq \lambda < h+1$, an entire function f of order λ has product expansion

$$f(z) = e^{g(z)} \cdot z^{\nu} \prod_{z_i} \left(1 - \frac{z}{z_i}\right) e^{p_h(z/z_i)}$$

where ν is the order of 0 at 0, z_i runs through non-zero zeros of f, g(z) is a polynomial of degree at most h, and $p_h(z)$ is the h^{th} truncation of the Taylor series for log(1-z), namely,

$$p_h(z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \ldots + \frac{z^h}{h}$$

For h = 0, take $p_0(z) = 0$. Hadamard's theorem controls the leading exponential: rather than being $e^{g(z)}$ with some unfathomable entire function g(z), we have sharp constraints on g(z).

Thus, there is the peculiar corollary that entire functions of growth order $\lambda < 1$ have h = 0, so have very simple product expansions

$$f(z) = e^{a} \cdot z^{\nu} \prod_{z_{i}} \left(1 - \frac{z}{z_{i}} \right) \qquad \text{(for } f \text{ entire of order } \lambda < 1)$$

for some constant a. In particular, if f is not a *polynomial*, then it has infinitely-many zeros.

This corollary can be used to prove that $\zeta(s)$ has infinitely-many zeros in the strip $0 \leq \operatorname{Re}(s) \leq 1$, as follows.

From the functional equation, and from the fact that $\Gamma(s)$ has no zeros, the only possible zeros of $\xi(s)$ are in $0 \leq \operatorname{Re}(s) \leq 1$.

Let $\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s)$. In light of the functional equation $\xi(1-s) = \xi(s)$ and the fact that $\xi(s)$ has exactly two poles, at s = 0, 1, which are simple, the function $s(1-s)\xi(s)$ is *entire* and still satisfies the same equation. That is $z \to (\frac{1}{2} + z)(\frac{1}{2} - z)\xi(\frac{1}{2} + z)$ is entire and *even*. Thus, it is a function of z^2 , and there is an entire function f such that

$$f(z^2) = (\frac{1}{2} + z)(\frac{1}{2} - z)\xi(\frac{1}{2} + z)$$

There is a traditionally-defined function $\Xi(z)$ which differs from this f only in normalization. We have shown that $\xi(s)$ is of growth-order 1, so f is of growth-order $\frac{1}{2}$. Thus, by the corollary to Hadamard's theorem, either f is a polynomial, or has infinitely-many zeros. If f(z) were a polynomial, then $f(z^2)$ would be a polynomial, as well. But the super-polynomial growth of $\pi^{-s/2}\Gamma(s/2)\zeta(s)$ for s real and $s \to +\infty$ shows that this is impossible. Thus, f has infinitely-many zeros. ///

[Titchmarsh 1986] E. C. Titchmarsh, edited and with a preface by D. R. Heath-Brown, The theory of the Riemann zeta- function, 2nd edn The Clarendon Press/Oxford University Press, New York, 1986. First edition, 1951, successor to *The Zeta-Function of Riemann*, 1930.