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1. Reconsideration of sinx

Although we already know quite a bit about trigonometric functions and their role in calculus, their treatment
can be redone to emphasize parallels for elliptic integrals and elliptic functions.

[1.1] Integral defining arcsinx The length of arc of a piece of a circle is x2 + y2 = 1 is

arc length of circle fragment from 0 to x =

∫ x

0

√
1 + y′2 dt =

∫ x

0

√
1 +

( d
dt

√
1− t2

)2
dt

=

∫ x

0

√
1 +

( 1
2 · (−2t)
√

1− t2
)2

dt =

∫ x

0

√
1 +

t2

1− t2
dt =

∫ x

0

dt√
1− t2

= arcsinx

[1.2] Periodicity The periodicity of sinx comes from the multi-valuedness of arcsinx. The multi-valuedness
is ascertainable from this integral, since the path from 0 to x can meander through the complex plane, going
around the two points ±1 special for the integral. The basic unit of this multi-valuedness is∫

γ

dζ√
1− ζ2

= ±2π (counter-clockwise circular path γ enclosing both ±1)

That is, a path integral from 0 to x could go from 0 to x along the real axis, but then add to the path a
vertical line segment from x out to a circle of radius 2, traverse the circle an arbitrary number of times, come
back along the same segment (thus cancelling the contribution from this segment).

There are two single-valued choices for (1 − z2)−
1
2 on any region complementary to an arc connecting ±1.

For example, it is easy to see a Laurent expansion in |z| > 1:

(1− z2)−
1
2 =

±i
z
·
(

1− 1

z2

)− 1
2

=
±i
z
·
(

1− (− 1
2 )

1

z2
+

(− 1
2 )(− 3

2 )

2!

( 1

z2

)2
+ . . .

)
= ±

( i
z

+
1/2

z3
+

3/8

z5
+ . . .

)
Let γ be a path traversing counterclockwise a circle of radius more than 1 centered at 0. Integrals

∫
γ
dz
zN

are
0 except for N = 1, in which case the integral is 2πi. Thus,∫

γ

dz√
1− z2

= ±2π

[1.3] Polynomial relation between sinx and sin′ x Rewriting the integral as∫ sin x

0

dt√
1− t2

= x

1
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and taking a derivative, by the fundamental theorem of calculus,

sin′ x · 1√
1− sin2

= 1

Thus, (sin′ x)2 = 1− (sinx)2 and the algebraic relation between sinx and its derivative (we know it is cosx)
arises:

(sinx)2 + (sin′ x)2 = 1

2. Construction of singly-periodic functions

A singly-periodic function f on C is a (probably holomorphic or meromorphic) function such that for some
ω 6= 0

f(z + ω) = f(z) (for all z ∈ C)

or at least for z away from poles of f . Iterating the condition, for any integer n

f(z + nω) = f(z)

In other words, f is invariant under translation by the group Z · ω inside C.

Feigning ignorance of the trigonometric (and exponential) function, whether as inverse functions to integrals
or not, as a warm-up to the construction of doubly-periodic functions we should try to construct some
singly-periodic functions.

[2.1] Construction and comparison to sin z For simplicity, take ω = 1, and make holomorphic or
meromorphic functions f such that

f(z + 1) = f(z) (for all z ∈ C)

That is, we want Z-periodic functions on C, hypothetically closely related to sin 2πz. A fundamental approach
to manufacturing such things is averaging, also called periodicization or automorphizing, as follows. For given
function ϕ, consider

f(z) =
∑
n∈Z

ϕ(z + n)

If this converges nicely it is certainly periodic with period 1, since

f(z + 1) =
∑
n∈Z

ϕ(z + 1 + n) =
∑
n∈Z

ϕ(z + n)

by replacing n by n− 1, using the fact that we have summed over the group Z, justifying rearrangement by
absolute convergence.

An elementary function making the sum converge, apart from poles, is ϕ(z) = 1/z2, so put

f(z) =
∑
n∈Z

1

(z + n)2

If we are lucky, this manufactures a function related to the sine function. Indeed, f(z) has double poles at
the zeros of sinπz, so a plausible preliminary guess is that f(z) is 1/(sinπz)2.
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To prove equality, perhaps after adjusting details, match poles, subtract, check that the difference goes to 0
as the imaginary part of z at infinity goes to ∞, and invoke Liouville. [1]

To do this, first determine the Laurent expansion of f(z) near its poles. By periodicity, we’ll understand all
the poles if we understand the pole at z = 0. This is

f(z) =
1

z2
+
∑
n 6=0

1

(z + n)2
=

1

z2
+ (holomorphic near z = 0)

To understand the nature of each pole of 1/ sin2 πz, by periodicity it suffices to look near z = 0. Since

sinπz = πz + (πz)3/3! + . . . = πz ·
(
1 + (πz)2/3! + . . .

)
the inverse square is [2]

1

sin2 πz
=

1

πz ·
(
1 + (πz)2/3! + . . .

) =
1

(πz)2
·
(
1− (πz)2/3! + . . .

)
=

1/π2

z2
+ holomorphic at 0

Correcting by π2, the poles of f(z) and π2/ sin2 πz cancel:

f(z)− π2

sin2 πz
=
∑
n

1

(z + n)2
− π2

sin2 πz
= entire

As Im(z) becomes large, f(z) goes to zero. For apparently different reasons, also

π2

sin2 πz
=
( 2πi

eπiz − e−2πiz

)2

−→ 0 (as |Im(z)| → ∞)

Thus, by Liouville, ∑
n∈Z

1

(z + n)2
=

π2

sin2 πz

[2.2] Differential equations for singly-periodic functions The construction produced a singly-periodic
function

∑
1/(z + n)2 identifiable in terms of already-familiar items. The analogous discussion for doubly-

periodic functions does not produce familiar objects. For practice, we now take another viewpoint that will
also succeed with constructed doubly-periodic functions.

[1] Liouville’s theorem asserts that a bounded entire function is constant. As an immediate corollary, an entire

function which is bounded and goes to 0 as the imaginary part of z goes to infinity is 0. Liouville’s theorem is a

striking instance of rigidity, where to prove two things equal, we need not prove something with infinite precision,

but only demonstrate sufficient closeness to be able to infer equality. A trivial case of rigidity is that two integers

are equal if they are within distance 1.

[2] The first two terms of the multiplicative inverse of a convergent power series 1 + c1z + c2z
2 + . . . are easily

determined, using 1
1−r = 1 + r + r2 + . . .:

1

1 + c1z + c2z2 + . . .
=

1

1− (−c1z − c2z2 − . . .)

= 1 + (−c1z − c2z2 − . . .) + (−c1z − c2z2 − . . .)2 + . . . = 1− c1z + (higher-order)

That is, with leading term 1, the coefficient of z changes simply by flipping sign.
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The aim is to determine a differential equation satisfied by f(z) =
∑

1/(z+ n)2. In terms of Liouville, both
f and its derivative

f ′(z) = −2
∑ 1

(z + n)3

go to 0 as Im(z)→ ±∞, so if a polynomial P (f, f ′) in f and f ′ cancels the poles, then P (f, f ′) is necessarily

constant, giving a polynomial relation [3] between f ′ and f . By periodicity, it suffices to consider the poles
at z = 0, as before.

Noting that f(−z) = f(z) assures vanishing of odd-order terms, let

f(z) =
1

z2
+ a+ bz2 +O(z4) so f ′(z) =

−2

z3
+ 2bz +O(z3)

To cancel poles by a polynomial P (f, f ′), the first step is to cancel the worst pole by f3−(f ′/−2)2: compute
(carefully!?) that

f(z)2 =
1

z4
+

2a

z2
+O(1) and f(z)3 =

1

z6
+

3a

z4
+

3a2 + 3b

z2
+O(1)

and (
f ′(z)

−2

)2

=
( 1

z3
− bz +O(z3)

)2

=
1

z6
− 2b

z2
+O(1)

Thus, (
f ′(z)

−2

)2

− f(z)3 = −3a

z4
− 3a2 + 5b

z2
+O(1)

The 1/z4 term can be eliminated by adjusting by a multiple of f(z)2:(
f ′(z)

−2

)2

− f(z)3 + 3a · f(z)2 =
−3a2 − 5b+ 6a2

z2
+O(1) =

3a2 − 5b

z2
+O(1)

Finally, subtract a multiple of f(z) to eliminate the 1/z2 term:(
f ′(z)

−2

)2

− f(z)3 + 3a · f(z)2 − (3a2 − 5b) · f(z) = O(1)

In fact, since both f and f ′ go to zero as Im(z)→ ±∞, the O(1) term must be 0. Rearrangement produces
a relation anticipating Weierstraß’ analogous relation for constructed doubly-periodic functions:

f ′2 = 4f3 − 12af2 + (12a2 − 20b)f (with f(z) =
∑ 1

(z + n)2
=

1

z2
+ a+ bz2 + . . .)

Again, for other reasons, we know f(z) = π2/ sin2 πz.

[2.2.1] Remark: The existence of the relation made no use of higher Laurent coefficients, and at the
same time explicitly demonstrates the dependence of the algebraic relation on the coefficients a, b in
f(z) = 1

z2 + a + bz2 + . . .. As discussed just below, in fact a = 2ζ(2) = π2/3 and b = 6ζ(4) = π4/15.
Thus, miraculously, 12a2 − 20b = 0, and the relation is simply

f ′2 = 4f3 − 4π2f2
(with f(z) =

∑ 1

(z + n)2
)

[3] A non-linear polynomial relation between f and f ′ is a non-linear, probably hard-to-solve, differential equation.

The difficulty of solving non-linear differential equations in general is not the point, however.
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3. Arc length of ellipses: elliptic integrals and elliptic functions

One might naturally be interested in the integral for the length of a piece of arc of an ellipse. For example,
the arc length of the piece the ellipse

x2 + k2y2 = 1 (with real k 6= 0)

up to x, in the first quadrant, is

∫ x

0

√
1 + y′2 dt =

∫ x

0

√
1 +

1

k2

( −1
2 · 2t√
1− t2

)2

dt =

∫ x

0

√
1 +

1

k2

t2

1− t2
dt =

1√
k

∫ x

0

√
k2 − (k2 − 1)t2

1− t2
dt

For the circle, k = 1, simplifying the numerator, and the value is as above:∫ x

0

1√
1− t2

dt = arcsinx

Otherwise, there is no obvious reduction to elementary integrals. This leads to calling this integral an elliptic
integral. [4] Many people studied the effect of changes of variables to transmute one form into another. [5]

The immediate problems of computing arc length or evaluating integrals were eclipsed by the higher-level
discovery by Abel and Jacobi (independently) in 1827 of the double periodicity [6] of functions f(z) defined
implicitly by

z =

∫ f(z)

0

dζ√
quartic in ζ with distinct factors

That is, there are periods ω1 and ω2 in C such that

f(z + ω1) = f(z + ω2) = f(z) (for all z ∈ C)

with ω1 and ω2 linearly independent over R. These ω1 and ω2 will arise as integrals of 1/
√

quartic over closed
paths, which is why these integrals themselves have come to be called period integrals, or simply periods.

For example, consider

z =

∫ f(z)

0

dζ√
1 + ζ4

[4] More generally, an elliptic integral is of the form

∫ b

a

(rational expression in z)√
cubic or quartic in z

dz

When the expression inside the radical has more than 4 zeros, or if the square root is replaced by a higher-order root,

the integral’s behavior is yet more complicated. The case of square root of cubic or quartic is the simplest beyond

more elementary integrals. Abel and Jacobi and others did subsequently consider the more complicated cases, a

popular pastime throughout the 19th century.

[5] By 1757 Euler had studied relationships dx/
√
x4 + 1 + dy/

√
y4 + 1 = 0, leading to algebraic relations between x

and y. Legendre (about 1811) studied transformations of such integrals, giving special reduced forms.

[6] Gauss later claimed he had found the double periodicity earlier, but had not published it. Abel and Jacobi

published in 1827, and Legendre very civilly acknowledged their work in a new edition of his Exercices de Calcul

Intégral. Later archival work did verify that Gauss had privately found the double periodicity in 1809.
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The uniform ambiguities in the value of this integral viewed as a path integral from 0 to w are the values
of the integrals along closed paths which circle an even number of the bad points e2πik/8 with k = 1, 3, 5, 7
(primitive 8th roots of 1).

With a denominator decaying like 1/|ζ|2 for large |ζ|, the integral over large circles goes to 0 as the radius
goes to +∞. The integral around two points added to the integral around the other two points is equal to
that outer circle integral, which is 0, so any two such integrals are merely negatives of each other.

Because of the decay for |ζ| large, the integral of 1/
√

1 + ζ4 along a path encircling e2πi/8 and e2πi 3/8 is
equal (via a deformation of the path) to the integral along the real axis, namely

λ =

∫ +∞

−∞

dt√
1 + t4

Whatever else this may be, it is a positive real number. Similarly, the integral along a path encircling e2πi/8

and e2πi 7/8 is equal (via a deformation of path) to the path integral along the imaginary axis, namely∫ +∞

−∞

d(it)√
1 + (it)4

= i ·
∫ +∞

−∞

dt√
1 + t4

= iλ

since i4 = 1. Thus, the double periodicity

f(z + λ) = f(z + iλ) = f(z)

The corresponding period lattice is
Λ = Z · λ+ Z · iλ ⊂ C

[3.0.1] Remark: In our example, the function f(z) has poles. Notice that the integral along the positive
real axis ∫ +∞

0

dt√
1 + t4

is absolutely convergent, with value λ/2, where λ is the whole integral on the real line, as just above. That
is, f(λ/2) =∞, which is to say that f has a pole at λ/2. Likewise, the integral along the upper imaginary
axis is absolutely convergent, to iλ/2, so another pole is at iλ/2. And then the periodicity implies that there
are poles (at least) at all points

λ

2
+ (m+ ni)λ

iλ

2
+ (m+ ni)λ (for m,n ∈ Z)

4. Construction of doubly-periodic functions

Once the existence of doubly-periodic functions is established via inverting elliptic integrals, the possibility of

other constructions arises, just as we have alternative expressions for sinx in addition to x =
∫ sin x

0
dt/
√

1− t2.

A lattice in C is a subgroup of C of the form

Λ = Z · ω1 + Z · ω2 (with ω1, ω2 linearly independent over R)

We want Λ-periodic functions, meaning meromorphic functions f on C such that

f(z + λ) = f(z) (for all z ∈ C and λ ∈ Λ)

6
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These are elliptic functions with period lattice Λ. For a construction by averaging, just as we constructed
π2/ sin2 πz, consider sums ∑

λ∈Λ

1

(z + λ)k

For k > 2, these are absolutely convergent and uniformly on compacta, and visibly invariant under z → z+λ
for λ ∈ Λ. The smallest exponent for which this sum converges (for z not in Λ) is k = 3, but Weierstraß

discovered [7] that it is best, to try to repair the convergence in the k = 2 case. The Weierstraß ℘-function
is

℘(z) = ℘Λ(z) =
1

z2
+
∑

06=λ∈Λ

(
1

(z + λ)2
− 1

λ2

)
This does converge absolutely, but the argument for double periodicity is more complicated. Still, its
derivative

℘′(z) = ℘′Λ(z) = −2
∑
λ∈Λ

1

(z + λ)3

is nicely convergent and admits the easy change-of-variables argument for its periodicity.

[4.0.1] Claim: The function ℘Λ(z) is doubly-periodic, with period lattice Λ.

Proof: For 0 6= µ ∈ Λ the difference ℘(z + µ)− ℘(z) has derivative ℘′(z + µ)− ℘′(z) = 0, by periodicity of
℘′(z), so there is a constant Cµ such that ℘(z + µ) = ℘(z) + Cµ for all z. Note that ℘ is an even function,
because the term 1/z2 is invariant under z → −z, and the other summands occur in pairs (z ± λ)2 − λ2,
interchanged by z → −z. Take z = −µ/2 to see that

Cµ = ℘(−µ/2 + µ)− ℘(µ/2) = 0

proving the periodicity of ℘. ///

[4.0.2] Claim: An entire doubly-periodic function is constant.

Proof: Let ω1, ω2 be Z-generators for Λ. Since the ωi are linearly independent over R, every z ∈ C is an
R-linear combination of them. Given z = aω1+bω2 with a, b ∈ R, let m,n be integers such that 0 ≤ a−m < 1
and 0 ≤ b− n < 1. Then

z = aω1 + bω2 = (a−m)ω1 + (b− n)ω2 + (mω1 + nω2)

Since mω1 + nω2 is in the lattice Λ, this shows that every Λ-orbit on C has a unique representative inside
the so-called fundamental domain

F = {rω1 + sω2 : 0 ≤ r < 1, 0 ≤ s < 1}

for Λ. A Λ-periodic function’s values on the whole plane are determined completely by its values on F . The
set F has compact closure

F = {rω1 + sω2 : 0 ≤ r ≤ 1, 0 ≤ s ≤ 1}

Thus, a continuous Λ-periodic function is bounded on F , so bounded on C. Thus, an entire Λ-periodic
function is bounded. By Liouville’s theorem, it is constant. ///

[... iou ...]pictures

[7] We follow Weierstraß’s work on elliptic functions that came somewhat after Abel’s and Jacobi’s.

7



Paul Garrett: Trigonometric functions, elliptic functions, elliptic modular forms (March 11, 2015)

[4.0.3] Claim: Fix a lattice Λ. The Weierstraß P-function ℘(z) and its derivative ℘′(z) (attached to lattice
Λ) satisfy the algebraic relation

℘′(z)2 = 4℘(z)3 − g2 ℘(z)− g3

where

g2 = g2(Λ) = 60
∑

06=λ∈Λ

1

λ4
g3 = g3(Λ) = 140

∑
06=λ∈Λ

1

λ6

[4.0.4] Remark: We will find the relation satisfied by ℘ and ℘′, not merely verify Weierstraß’ relation,
much as we did for singly-periodic functions.

Proof: The poles of both ℘ and ℘′ are just on the lattice Λ, so if we can make a linear combination of
powers of ℘ and ℘′ whose Laurent expansion at 0 has no negative terms or constant term, then that linear
combination of powers is identically 0.

Since ℘(z) is even, the Laurent expansion of ℘ at 0 has no odd-degree terms. Because of the convergence
trick, the constant Laurent coefficient of ℘(z) at 0 is 0, so the expansion is of the form

℘(z) =
1

z2
+ az2 + bz4 +O(z6) and ℘′(z) =

−2

z3
+ 2az + 4bz3 +O(z5)

Then (
℘′(z)

−2

)2

=
1

z6
− 2a

z2
− 4b+O(z) and ℘(z)3 =

1

z6
+

3a

z2
+ 3b+O(z)

so (
℘′

−2

)2

− ℘3 =
−5a

z2
− 7b+O(z)

Then (
℘′

−2

)2

− ℘3 + 5a℘+ 7b = O(z)

As remarked at the beginning, this linear combination of powers is a doubly-periodic function without poles,
so by Liouville is constant, yet vanishes at z = 0, so is 0. That is,

℘′(z)2 = 4℘(z)3 − 20a℘(z)− 28b

With ℘o(z) = ℘(z)− 1
z2 ,

a =
℘′′o(0)

2!
=

1

2!
·
∑

06=λ∈Λ

(−2)(−3)

λ4
= 3

∑
06=λ∈Λ

1

λ4

and

b =
℘′′′′o (0)

2!
=

1

4!
·
∑

06=λ∈Λ

(−2)(−3)(−4)(−5)

λ6
= 5

∑
0 6=λ∈Λ

1

λ6

we have Weierstraß’
℘′(z)2 = 4℘(z)3 − g2 ℘(z)− g3

as anticipated. ///

[4.0.5] Remark: There is at least one other way to construct doubly-periodic functions directions, due
to Jacobi, who expressed doubly-periodic functions as ratios of entire functions (theta functions) which
are genuinely singly-periodic with periods (for example) Z, and nearly (but not quite) periodic in another
direction. (Indeed, we saw just above that entire functions that are genuinely doubly-periodic are constant!)
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5. Elliptic modular forms

[5.1] Functions of lattices The functions traditionally denoted g2 = g2(Λ) and g3 = g3(Λ) in Weierstraß’
equation relating ℘ and ℘′ certainly depend on the lattice, or module, Λ. It is in this sense that they are
modular forms. [8] That is, as they arose historically, modular forms are functions on the set of lattices in
C.

The functions g2 and g3 have the further property of homogeneity, meaning that for any non-zero complex
number α

g2(α · Λ) = α−4 g2(Λ) and g3(α · Λ) = α−6 g3(Λ)

since ∑
0 6=λ∈Λ

1

(αλ)2k
= α−2k

∑
0 6=λ∈Λ

1

λ2k

Thus, more precisely, modular forms are homogeneous functions on lattices in C.

[5.2] From lattices to the upper half-plane We would be happier if the inputs to these functions-of-
lattices were more familiar, rather than lattices, since initially we might see no helpful structure on the set
of lattices. The homogeneity allows a more tangible viewpoint, as follows. Let F be a homogeneous function
F of degree −k on lattices, meaning that [9]

F (α · Λ) = α−k · F (Λ)

For a Z-basis ω1, ω2 for a lattice Λ, ordered so that ω1/ω2 ∈ H, normalize the second basis element to
1, by multiplying Λ by ω−1

2 and using basis z = ω1/ω2, 1 for the dilated-and-rotated lattice ω−1
2 · Λ. By

homogeneity,
F (ω−1

2 · Λ) = ωk2 · F (Λ)

allowing recovery of the value of F on the original lattice from the value on the adjusted one.

Further, a function of lattices does not depend upon choice of ordered basis. That is, for

(
a b
c d

)
in SL2(Z)

[10] the new ordered basis [
ω′1
ω′2

]
=

[
aω1 + bω2

cω1 + dω2

]
=

(
a b
c d

)[
ω1

ω2

]
gives the same lattice, that is,

Z · ω′1 + Z · ω′2 = Z · ω1 + Z · ω2

The normalization and change-of-basis can be combined, as follows. For R-linearly-independent ω1 and ω2,
and without loss of generality with ω1/ω2 in the upper half-plane H, let

z = ω1/ω2 (in H)

[8] Why form rather than function? After all, these functions are literal functions (in our modern sense) on the set

of lattices in C. Certainly there was historical hesitancy to attempt to refer to functions on exotic spaces, since there

was no completely abstract notion of function in the 19th century.

[9] Yes, g2 is homogeneous of degree −4 and g3 is homogeneous of degree −6. Yes, it would have been better if their

indices matched their degrees of homogeneity, at least up to sign, but the tradition developed otherwise.

[10] As usual, for a commutative ring R, the group SL2(R) is the group of invertible 2-by-2 matrices with entries in

R and determinant 1.
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Put
f(z) = F (Z · z + Z · 1)

For

(
a b
c d

)
in SL2(Z), (

a b
c d

)[
z
1

]
=

[
az + b
cz + d

]
Since change-of-basis does not alter the value of a function of lattices, using homogeneity,

f(z) = F (Z · z + Z · 1) = F (Z · (az + b) + Z · (cz + d))

= (cz + d)−k F (Z · az + b

cz + d
+ Z · 1) = (cz + d)−k f(

az + b

cz + d
)

Thus, the action of SL2(Z) or SL2(C) by linear fractional transformations [11](
a b
c d

)
(z) =

az + b

cz + d

arises through renormalization of generators for lattices.

[5.3] Modular forms of weight k The next incarnation of modular forms is as elliptic modular forms of
weight k: these are holomorphic function f of a complex variable z on H, meeting the automorphy condition
[12]

f(

(
a b
c d

)
(z)) = (cz + d)k f(z) (where

(
a b
c d

)
∈ SL2(Z), z ∈ H)

For example, up to normalizations, the functions associated to g2 and g3 above fit into a family of explicitly-
constructable elliptic modular forms

Eisenstein series =
∑
c,d

1

(cz + d)k
(summed over c, d not both 0)

Since cz + d is complex, we must take k ∈ Z. This series converges for k > 2. The series is identically
0, by obvious cancellation, for k odd. Verification of the automorphy condition is direct, and is really just
repeating the conversion of homogeneous functions-of-lattices to functions on H:∑

m,n

1

(maz+b
cz+d + n)k

= (cz + d)k
∑
m,n

1(
m(az + b) + n(cz + d)

)k
= (cz + d)k

∑
m,n

1(
(ma+ nc)z + (mb+ nd)

)k = (cz + d)k
∑
m,n

1

(m′z + n′)k

(with (m′, n′) = (ma+ nc, mb+ nd) = (m, n)

(
a b
c d

)
)

Since right multiplication by any element of SL2(Z) is a bijection of Z2 − {0} to itself, the sum is again
exactly over pairs of integers not both 0, recovering the Eisenstein series.

[11] Also dubiously called Möbius transformations. That this is a genuine group action, including associativity, is

not obvious from an ad hoc presentation. In fact, as we see later, this action is descended from a reasonable linear

action on projective space, giving a conceptual explanation for the good behavior. Indeed, in general, linear fractional

transformations truly act on the Riemann sphere, that is, on complex projective one-space P1, which is C with an

additional point.

[12] The function j(

(
a b

c d

)
, z) = (cz+d)−k is a cocycle, because it satisfies the condition j(γδ, z) = j(γ, δ(z))j(δ, z).
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[5.4] Normalizations of Eisenstein series In the sum
∑
c,d(cz + d)−k over all pairs (c, d) 6= (0, 0), we

could take out common divisors ` = gcd(c, d):∑
c,d

1

(cz + d)k
=
∑
c,d

1

`k
1

( c`z + d
` )k

=
∑
c,d

1

`k
1

( c`z + d
` )k

=
∑
`≥1

1

`k

∑
c,d: gcd(c,d)=`

1

( c`z + d
` )k

=
∑
`≥1

1

`k

∑
c′,d′: gcd(c′,d′)=1

1

(c′z + d′)k
= ζ(`)

∑
c′,d′: gcd(c′,d′)=1

1

(c′z + d′)k

That is, up to the constant ζ(`), the sum over all c, d gives the same thing as the sum over coprime c, d. Some
sources create notations that attempt to distinguish these variations, but there is no universal notational
convention.

[5.5] Group-theoretic version of Eisenstein series Further, noticing that for k ∈ 2Z the pairs ±(c, d)
give the same outcome (cz+d)k, we might declare the weight-k Eisenstein series to have a leading coefficient
1
2 :

Eisenstein series = 1
2

∑
coprime c,d

1

(cz + d)k

Indeed, this is exactly a group-theoretic version of an Eisenstein series: with Γ∞ =

(
∗ ∗
0 ∗

)
⊂ Γ, the coset

space Γ∞\Γ is in bijection with the set of coprime pairs (c, d) modulo ±1, by

Γ∞ ·
(
a b
c d

)
−→ {±1} · (c, d)

Indeed, since ad − bc = 1, necessarily the c, d in a lower row of an element of SL2(Z) are mutually prime.
Conversely, given coprime c, d, there exist a, b such that ad− bc = 1, creating an element of SL2(Z). Thus,
another presentation of an Eisenstein series, perhaps optimally explanatory:

Ek(z) =
∑

γ∈Γ∞\Γ

1

(cγz + dγ)k
= 1

2

∑
coprime c,d

1

(cz + d)k
(where γ =

(
∗ ∗
cγ dγ

)
)

[5.6] Congruence subgroups There are Eisenstein series with congruence conditions: for fixed positive
integer N and integers co, do, define Eisenstein series with congruence conditions

E(z) =
∑

(c,d)=(co,do) mod N

1

(cz + d)k
(c, d not both 0)

This is an example of a modular form of level N , meaning that a condition such as(
a b
c d

)
=

[
1 0
0 1

]
mod N (elementwise)

is necessary to have [13] this Eisenstein series satisfy the automorphy condition

E(

(
a b
c d

)
(z)) = (cz + d)k E(z)

[13] Some choices of the data co, do modulo N may allow larger groups than Γ(N). For example, co = do = 0 does not

require any congruence condition at all (and yields N−k times the simplest Eisenstein series E(z) =
∑
c,d 1/(cz+d)k

summed over all c, d not both 0.
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The first examples were tacitly of level 1. Such considerations motivate attention to natural subgroups of
SL2(Z), with traditional notations: for a positive integer N ,

Γ(N) = {
(
a b
c d

)
∈ SL2(Z) : a = 1 mod N, b = 0 mod N, c = 0 mod N, d = 1 mod N}

= {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

[
1 0
0 1

]
mod N}

Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

[
∗ ∗
0 ∗

]
mod N}

Γ1(N) = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

[
1 ∗
0 1

]
mod N}

In particular, the frequently occurring subgroup Γ(N) is also denoted ΓN for reasons of economy:

ΓN = Γ(N) = principal congruence subgroup of level N

[5.7] Preview: a less-elementary modular form Up to a normalizing constant, the discriminant [14] of
Weierstraß’ cubic 4x3 − g2x− g3 is g3

2 − 27g2
3 . For the lattice Λz = Z · z + Z · 1 ⊂ C, the discriminant is an

elliptic modular form of weight 12, usually normalized as

∆(z) =
1

(2π)12
(g3

2 − 27g2
3)

We’ll later prove the surprising factorization

∆(z) = e2πiz
∞∏
n=1

(1− e2πinz)24

This factorization suggests combinatorial applications, in light of the generating function identity

∞∏
n=1

1

1− qn
=

∞∑
n=0

p(n) · xn

where p(n) is the number of partitions n1 + . . .+ nk = n, with n1 ≤ n2 ≤ . . . ≤ nk. Even more profoundly,
as it turns out, the Fourier expansion

∆(z) = e2πiz +
∑
n≥2

τ(n) e2πinz

has coefficients τ(n) with properties conjectured by S. Ramanujan: weak multiplicativity τ(mn) = τ(m)τ(n)

for coprime m,n was proven by L. J. Mordell soon after, but the estimate |τ(p)| ≤ 2p
11
2 +ε for every ε > 0

was proven only in 1974 by P. Deligne, as a striking corollary of the Grothendieck-Deligne-et al proof of
Weil’s conjectures on Hasse-Weil zeta functions of algebraic varieties. E. Hecke had proven |τ(p)| ≤ 2p

12
2

[14] The discriminant of a cubic (x−α)(x−β)(x− γ) is ∆ = (α−β)2(α− γ)2(β− γ)2. Invariant under permutations

of the roots, it is expressible in terms of the elementary symmetric functions s1 = α+ β+ γ, s2 = αβ+ βγ+ γα, and

s3 = αβγ. After some work, one finds

∆ = (s21 − 4s2)s22 + s3(−4s31 + 18s1s2 − 27s3)

For a cubic x3 + px+ q this simplifies to the more-familiar −4p3 − 27q2.
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in fairly straightforward fashion decades earlier, but that last 1
2 + ε was much larger, and more meaningful,

than it may seem.

[5.8] Preview: the j-invariant and parametrization of elliptic curves As above, a reasonable notion
of isomorphism of elliptic curves C/Λ leads to identifying the collection of isomorphism classes with the
quotient Γ\H, with Γ = SL2(Z).

The j-function is

j(z) = 1728
g3

2

g3
2 − 27g2

3

The numerator and denominator are both weight 12 level one modular forms, so j(z) is weight 0, that is,
invariant under SL2(Z).

We will see that z → j(z) injects the quotient SL2(Z)\H to complex projective one-space P1, so j(z) is a
sufficient invariant for isomorphism classes of elliptic curves over C.

[5.8.1] Remark: There is much more to be said about modular forms, even from an elementary viewpoint!
The above preview neglects many aspects!
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