(March 24, 2015)

Fields of elliptic functions

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

This document is

http://www.math.umn.edu/~garrett/m/complex/notes_2014-15/10a_field_elliptic_fcns.pdf]

[0.0.1] Theorem: Every elliptic function (with lattice Λ) is expressible in terms of the corresponding \wp and \wp' . That is, for lattice Λ , the field of meromorphic Λ -periodic functions is exactly the collection of rational expressions in $\wp_{\Lambda}(z)$ and $\wp'_{\Lambda}(z)$. Further, all even Λ -periodic functions are rational expressions in $\wp_{\Lambda}(z)$.

Incidental to the proof of the theorem, we have

[0.0.2] Claim: Let f be a Λ -periodic meromorphic function. For a fixed choice of basis ω_1, ω_2 for Λ , let F be the corresponding *fundamental domain* as above. Let z_1, \ldots, z_m be the zeros of f in F, and let p_1, \ldots, p_n be the poles, both including multiplicities. ^[1] Then m = n. Further,

$$\sum_i z_i - \sum_j p_j = 0 \bmod \Lambda$$

Proof: Integrating f/f' around the boundary of F (make minor adaptations in case a zero or pole happens to be exactly on that path) computes $2\pi i(m-n)$, by Cauchy's residue theorem. On the other hand, by periodicity of f/f', and since we integrate on opposite edges of the parallelogram F in opposite directions, this integral is 0. Thus, m = n.

Similarly, integrate $z \cdot f'/f$ around the boundary of F. On one hand, by Cauchy's residue theorem this computes

$$2\pi i \cdot (\sum_i z_i - \sum_j p_j)$$

This time, since the function with the factor of z thrown in is *not* periodic, the integral is not 0. However, there is still some cancellation. The integral is

$$-\omega_2 \int_0^{\omega_1} \frac{f'}{f} + \omega_1 \int_0^{\omega_2} \frac{f'}{f}$$

One may easily overlook the fact that the two integrals are *integer* multiples of $2\pi i$, which follows from ^[2]

$$\int_0^{\omega_i} \frac{f'}{f} = \int_0^{\omega_i} \frac{d\log f}{d\zeta}$$

and the fact that $f(0) = f(\omega_i)$. That is, as ζ goes from 0 to ω_i , the function $(\log f)(\zeta)$ traces out a closed path circling 0 some *integer* number of times, say k_i . Then the integral is

$$-\omega_2 \cdot 2\pi i k_1 + \omega_1 \cdot 2\pi i k_2 \in 2\pi i \cdot \Lambda$$

Cancelling the factor of $2\pi i$, equating the two outcomes gives

$$\sum_{i} z_i - \sum_{j} p_j \in \Lambda$$

^[1] Usually *including multiplicities* means that for a zero z_o of order ℓ the point z_o is included ℓ times on the list of zeros. That is, this list is a *multiset*, not an ordinary set, since ordinary sets (by their nature) do not directly keep track of multiple occurrences of the same element.

^[2] This is an instance of the Argument Principle.

as claimed.

Proof: Let f be a Λ -periodic meromorphic function on \mathbb{C} . We can break f into odd and even pieces by

$$f(z) = \frac{f(z) + f(-z)}{2} + \frac{f(z) - f(-z)}{2}$$

For f odd, the function $\wp' \cdot f$ is even, so it suffices to prove that every even elliptic function is rational in \wp .

The previous claim has immediate implications for the values of \wp , which we use to form an expression in \wp that will duplicate the zeros and poles of the given even f. Generally, for even f, since f(-z) = f(z), for $2z_o \notin \Lambda$ and $f(z_o) = 0$, then $f(-z_o) = 0$ and z_o and $-z_o$ are distinct modulo Λ . For $2z_o \in \Lambda$, the oddness (and periodicity) of f' yields

$$f'(z_o) = -f'(-z_o) = -f'(-z_o + 2z_o) = -f'(z_o)$$

so $f'(z_o) = 0$, and the order of the zero z_o is at least 2.

In particular, by the previous claim, since $\wp(z) - \wp(a)$ has the obvious double pole on Λ , it has exactly two zeros, whose sum is 0 modulo Λ . Obviously *a* itself is a 0, and for $a \notin \frac{1}{2}\Lambda$ the unique (mod Λ) other zero is -a. And for $a \in \frac{1}{2}\Lambda$ it is a *double* zero of $\wp(z) - \wp(a)$.

Thus, for a zero $z_o \notin \Lambda$ of f, the order of vanishing of $\wp(z) - \wp(z_o)$ at all its zeros is at most that of f at those zeros. Thus, by comparison to f(z), the function

$$\frac{f(z)}{\wp(z) - \wp(z_o)}$$

has lost two zeros (either z_o and $-z_o$ or a double zero at z_o). The double pole of $\wp(z) - \wp(z_o)$ at 0 makes $f(z)/(\wp(z) - \wp(z_o))$ have order of vanishing at 0 two more than that of f(z). No new poles are introduced by such an alteration, nor any zeros off Λ . Thus, since there are only finitely-many zeros (modulo Λ), after finitely-many such modifications we have a function g(z) with no zeros off Λ .

Next, we get rid of *poles* of g(z) off Λ by a similarly procedure, repeatedly *multiplying* by factors $\wp(z) - \wp(z_o)$. Thus, for some list of points z_i not in Λ , with positive and negative integer exponents e_i ,

$$f(z) \cdot \prod_{i} (\wp(z) - \wp(z_i))^e$$

has no poles or zeros off Λ . From the previous discussion, this expression has *no* zeros or poles at all, and then is constant.

[0.0.3] Remark: There is at least one other way to construct doubly-periodic functions directions, due to Jacobi, who expressed doubly-periodic functions as ratios of *entire* functions (*theta functions*) which are genuinely singly-periodic with periods (for example) \mathbb{Z} , and nearly (but not quite) periodic in another direction. (Indeed, we saw just above that entire functions that are genuinely doubly-periodic are constant!)