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1. Fundamental domain for Γ = SL2(Z) on H

The simplest beginning choice of discrete subgroup Γ of G = SL2(R) is

Γ = SL2(Z) = {2-by-2 integer matrices with determinant 1}

Both for use below and to show that SL2(Z) is a large group, note:

[1.0.1] Claim: Given relatively prime integers c, d, there are integers a, b such that

(
a b
c d

)
∈ Γ.

Proof: For any integers c, d, there are integers m,n such that

greatest common divisor c, d = m · c+ n · d

Here the greatest common divisor is 1, so take a = n, b = −m, and then ad− bc = 1. ///

To be able to draw a picture of the quotient, we take an archaic approach which nevertheless succeeds in
this case, namely, we find a fundamental domain for Γ on H, meaning to find a nice set of representatives
for the quotient. Second, see how the edges of the fundamental domain are glued together when mapped to
the quotient Γ\H.

[1.0.2] Claim: Every Γ-orbit in H has a representative in

F = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1

2
}

More precisely, each orbit has a unique representative in the standard fundamental domain

F = {z ∈ H : |z| > 1, −1

2
≤ Re(z) <

1

2
} ∪ {z ∈ H : |z| = 1,Re(z) ≤ 0}

Proof: From above, for

(
a b
c d

)
∈ Γ

Im

(
a b
c d

)
(z) =

Im z

|cz + d|2

The set of complex numbers cz + d is a subset of the lattice Z · z + Z ⊂ C. Since it is a discrete subgroup, it
has (at least one) smallest (in absolute value) non-zero element.

Thus, inf |cz + d| = min |cz + d| > 0, taking the infimum or minimum over relatively prime c, d, which we
have observed are exactly the lower rows of elements of Γ. Then

sup
1

|cz + d|
= max

1

|cz + d|
<∞
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Thus, for fixed z ∈ H,

sup Im

(
a b
c d

)
(z) = sup

Imz

|cz + d|2
= max

Imz

|cz + d|2
<∞

Thus, in each Γ-orbit there is (at least one) point z assuming the maximum value of Imz on that orbit.

Since Im

(
a b
c d

)
(z) = Imz/|cz + d|2, for z giving maximal Imz in its orbit, it must be that

|cz + d| ≥ 1

for all c, d relatively prime. Thus, for example, for d = 0 there is the inversion[
0 −1
1 0

]
(z) = −1/z

Thus, |1 · z + 0| ≥ 1, so for Imz maximal in its Γ-orbit, |z| ≥ 1.

We can adjust any z ∈ H by [
1 n
0 1

]
(z) = z + n (for n ∈ Z)

to normalize −1/2 ≤ Re(z) < 1/2.

So take |z| ≥ 1 and |Re(z)| ≤ 1/2 and show that |cz+ d| ≥ 1 for all c, d. Break z into its real and imaginary
parts z = x+ iy. Then

|cz + d|2 = (cx+ d)2 + c2y2 = c2(x2 + y2) + 2cdx+ d2 ≥ c2(x2 + y2)− |cd|+ d2

≥ c2(|z|2 − 1

4
) +

c2

4
− |cd|+ d2 ≥ c2(|z|2 − 1

4
)

Thus, for |c| ≥ 2, we have |cz + d| > 1 when |z| ≥ 1 and |x| ≤ 1/2.

For c = 0, necessarily d = ±1, and the only corresponding elements of Γ are[
±1 n

0 ±1

]
The only z’s with |z| ≥ 1 and |x| ≤ 1/2 that can be mapped to each other by such group elements are
− 1

2 + iy and 1
2 + iy. We whimsically keep the former as our chosen representative.

For c = ±1,
|cz + d|2 = 2xd+ d2 + |z|2 ≥ −|d|+ d2 + 1 ≥ 1 (for d ∈ Z)

In fact, for |x| < 1/2, there is a strict inequality

2xd+ d2 + |z|2 > −|d|+ d2 + 1 ≥ 1

so |cz + d| > 1. When |x| = 1/2, still −|d|+ d2 + 1 > 1, except for d = 0,±1.

Thus, first without worrying about strictness of the inequalities, |cz + d| ≥ 1 for |z| ≥ 1 and |x| ≤ 1/2, and
the set F contains (at least one) representative for every orbit. What remains is to eliminate duplicates.

We have already observed that the only duplicates for |z| > 1 have |x| = 1/2, and z → z + 1 maps the
x = −1/2 line to the x = 1/2 line.
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Now consider |z| = 1. For |x| < 1/2, the only cases where |cz + d| = 1 are with c = ±1 and d = 0, which
correspondes to matrices(

a b
c d

)
=

[
∗ ±1
∓1 0

]
=

[
1 n
0 1

]
·
[

0 ±1
∓1 0

]
(for some n ∈ Z)

For |z| = 1, the inversion z → −1/z maps z = x+ iy to

−1

z
= −z/|z|2 = −z = −x+ iy

Thus, for |x| < 1/2, the only one among these products that maps z back to the fundamental domain is
exactly the inversion z → −1/z. This inversion identifies the two arcs

{|z| = 1 and − 1

2
≤ x ≤ 0} {|z| = 1 and 0 ≤ x ≤ 1

2
}

Thus, we should include only one or the other of these two arcs in the strict fundamental domain.

Last, with |z| = 1 and |x| = 1/2, there are exactly four group elements modulo ±12 (the center {±12}
acts trivially) that map z to the closure of the fundamental region. These are: the identity, one of the
translations z → z±1, the inversion z → −1/z, and the composite of the translation and the inversion. That
is, in addition to the identity,[

1 1
0 1

]
,

[
0 −1
1 0

]
,

[
1 −1
0 1

]
·
[

0 −1
1 0

]
map − 1

2
+
i
√

3

2
to the boundary of F

and [
1 −1
0 1

]
,

[
0 −1
1 0

]
,

[
1 1
0 1

]
·
[

0 −1
1 0

]
map

1

2
+
i
√

3

2
to the boundary of F

Thus, in the quotient Γ\H, the identification of the sides x = ±1 creates a (topological) cyclinder, and the
identification of the two arcs on the bottom closes the bottom of the cylinder. Thus, topologically, we have a
cylinder closed at one end, which is a disk. But the non-euclidean geometry (if we were to pay more attention
to details) suggests that the top of the cylinder is infinitely far away, and the radius of the cylinder goes to
0 as one goes toward the open top end, so it is more accurate to think of the quotient Γ\H as a raindrop
shape. ///

2. Inversion and translation generate SL2(Z)

[2.0.1] Claim: The inversion (long Weyl element) w =

(
0 −1
1 0

)
and translations

(
1 n
0 1

)
with n ∈ Z

generate Γ = SL2(Z).

Proof: Again use the fact that Z · z + Z is a lattice in C. In particular, there is no infinite sequence of
decreasing sizes |c1z+d1| > |c2z+d2| > . . . with integers cj , dj . Thus, there is no infinite increasing sequence
of heights

y

|c1z + d1|2
<

y

|c2z + d2|2
< . . .

Since Im
(( a b

c d

)
(z)
)

=
y

|cz + d|2
, this implies that there is no infinite increasing sequence

Im(γ1z) < Im(γ2z) < . . . (for γj ∈ Γ)
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This promises that the following procedure does eventually put every point z ∈ H inside the standard
fundamental domain for Γ.

Given z ∈ H, translate z to z1 satisfying |Re(z1)| ≤ 1
2 . If |z1| ≥ 1, stop: z1 is in the fundamental domain. If

|z1| < 1, apply the inversion, noting

Im
(−1

z1

)
=

Im(z1)

|z1|2
> Im(z1) (since |z1| < 1)

Continue: translate −1/z1 back to z2 in the strip. If |z2| ≥ 1, stop. If |z2| < 1, invert. Translate back to z3

in the strip, and so on. The sequence Im(z1) < Im(z2) < . . . must be finite, so the process terminates after
finitely many steps.

Thus, given γ ∈ Γ, take z in the interior of the fundamental domain, and let δ be a finite product of
inversions and integer translations so that δ−1γz is back in the fundamental domain. Since z is in the
interior, δ−1γ = ±12. Since w2 = −12, necessarily γ is expressible in terms of inversions and integer
translations. ///

[2.0.2] Remark: The number of steps require to move a given z ∈ H into the fundamental domain is not
simple to describe. This complication is visible in pictures of the tiling of the upper half-plane by images of
the fundamental domain.

3. Fundamental domain for Γθ and Γ(2)

The determination of the standard fundamental domain F for Γ(1) = SL2(Z) allows explicit determination
of fundamental domains for finite-index subgroups such as the principal congruence subgroups

Γ(N) = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 0
0 1

)
mod N}

by choosing coset representatives γi for Γ(N) in Γ(1), and then [1]

fundamental domain for Γ(N) =
⋃
i

γiF

It is useful that Γ(N) is exactly the kernel of the group homomorphism

SL2(Z)→ SL2(Z/N) by

(
a b
c d

)
→
(
a mod N b mod N
c mod N d mod N

)
so is normal in Γ(1).

For the important special choice [2]

Γθ = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 0
0 1

)
mod 2 or

(
a b
c d

)
=

(
0 1
1 0

)
mod 2}

[1] Since H =
⋃
γ∈Γ(1) γF , for representatives γi with Γ(1) =

⋃
i Γ(N)γi,

H =
⋃

γ∈Γ(1)

γF =
⋃

γ∈
⋃

i Γ(N)γi

γF =
⋃

γ∈Γ(N)

⋃
i

γγiF =
⋃

γ∈Γ(N)

γ

(⋃
i

γiF

)

[2] This subgroup Γθ is important because it appears in sums-of-squares problems, the simplest application of theta

series to seemingly elementary number-theory problems.
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= Γ(2) ∪
(

0 −1
1 0

)
· Γ(2)

the coset-representative oriented choice of fundamental domain can be adjusted to prove the corollary that
Γθ is generated by z → −1/z and z → z + 2, as below.

[3.0.1] Remark: The following assertion holds without assuming p is prime, but all we need at the moment
is p = 2, in any case. Further, the surjectivity of SL2(Z)→ SL2(Z/2) is easy to observe directly, since, for
example, the elements(

1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

) (
0 −1
1 0

) (
1 −1
1 0

) (
0 1
−1 1

)
surject to SL2(Z/2).

[3.0.2] Claim: For p prime, the natural map

SL2(Z)→ SL2(Z/p) is surjective

Proof: Let q be the quotient map Z→ Z/p. First, given u, v not both 0 in Z/p, we will find relatively prime
c, d in SL2(Z) such that qc = u and qd = v.

For v 6∈ pZ, there is 0 6= d ∈ R such that qd = v. Consider the conditions on c ∈ R

c = u mod p and c = 1 mod d

As d 6∈ pZ, by the maximality of the ideal pZ there are x ∈ Z and pm ∈ pZ such that xd + pm = 1. Let
c = xdu+ pm. From xd+ pm = 1, xd = 1 mod pm and pm = 1 mod d, so this expression for c satisfies the
two congruences conditions. In particular, qc = u, and since c = 1 mod d it must be that gcd(c, d) = 1.

For v = 0 in Z/p, necessarily u 6= 0, and we reverse the roles of c, d in the previous paragraph.

Thus, there are coprime c, d in Z whose images mod p are u, v. For integers s, t there exist a, b such that
gcd(s, t) = as − bt. The coprimality of c, d implies that there are a, b in R such that ad − bc = 1. That is,(
a b
c d

)
∈ SL2(Z), and (

a b
c d

)
=

(
∗ ∗
u v

)
mod p

Further adjustment to accommodate the upper row is more straightforward: Given

(
r s
u v

)
in SL2(Z/p),

and letting

(
a b
c d

)
also denote its image in SL2(Z/p),

(
r s
u v

) (
a b
c d

)−1

=

(
r s
u v

) (
d −b
−c a

)
=

(
r s
u v

) (
v −b
−u a

)
=

(
rv − su ∗
uv − vu ∗

)
=

(
1 ∗
0 ∗

)

The right-hand side is in SL2(Z/p), so, in fact, it must be of the form

(
1 t
0 1

)
, and

(
r s
u v

) (
a b
c d

)−1(
1 −t
0 1

)
=

(
1 0
0 1

)
mod p

So (
1 t
0 1

)(
a b
c d

)
=

(
r s
u v

)
mod p
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giving the surjectivity. ///

[3.0.3] Claim: #SL2(Z/p) = (p2 − 1)p for prime p.

Proof: First, count GL2(Z/p). This is the number of ordered bases for the vector space (Z/p)2 over Z/p,
since an element of GL2(Z/p) sends one basis to another, is transitive on ordered bases, and g ∈ GL2(Z/p)
fixes a basis v1, v2 only for g = 12.

The first basis element v1 can be any non-zero vector in (Z/p)2, giving p2 − 1 choices. For each such choice,
the second basis element can be anything not on the Z/p-line spanned by v1, giving p2 − p choices. Thus,
#GL2(Z/p) = (p2 − 1)(p2 − p).

The determinant map surjects GL2(Z/p) → (Z/p)×, and has kernel SL2(Z), so the index of SL2(Z/p) is
#(Z/p)× = p− 1, and the cardinality is as claimed. ///

[3.0.4] Corollary: Γ(2) has six coset representatives in Γ(1):(
1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

) (
0 −1
1 0

) (
1 −1
1 0

) (
0 1
−1 1

)

Proof: The index is (22 − 1)2 = 6. The six listed matrices are in SL2(Z) and are distinct mod 2. ///

[3.0.5] Corollary: Γθ has three coset representatives in Γ(1):(
1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

)

Proof: The index is 3, since Γθ is index 2 above Γ(2). The three listed matrices are in SL2(Z) and are not

only distinct mod 2 but also do not differ mod Γ(2) merely by multiplication by

(
0 −1
1 0

)
. ///

[3.0.6] Corollary: A fundamental domain for Γθ is

Fθ = {z ∈ H : |z| ≥ 1 and |Re(z)| ≤ 1}

Proof: With standard fundamental domain

F = {z ∈ H : |z| ≥ 1 and |Re(z) ≤ 1
2}

for Γ(1), the coset representatives for Γθ in Γ(1) give a fundamental domain

F ′ = F ∪
(

1 1
0 1

)
F ∪

(
1 0
1 1

)
F

for Γθ. [... iou ...] pictures! We will symmetrize this into a more easily-describable form. With hindsight,
we replace (

1 0
0 1

) (
1 1
0 1

) (
1 0
1 1

)
by (

1 0
0 1

) (
1 1
0 1

) (
1 −1
1 0

)
=

(
1 1
0 1

)(
0 −1
1 0

)
6
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The point is that

(
1 1
0 1

)(
0 −1
1 0

)
F is understandable as a translate of the inverted F .

Move the right half of

(
1 1
0 1

)
F ∪

(
1 −1
1 0

)
F left by z → z − 2, so that the two halves are symmetric

about the imaginary axis. This produces the region claimed in the theorem. ///

4. Generators for Γθ

[4.0.1] Corollary: Inversion z → −1/z and translation z → z + 2 generate Γθ.

Proof: Given z ∈ H, translate z by 2Z to |Re(z)| ≤ 1. If |z| ≥ 1, stop. If not, invert, and then translate
back to |Re(z)| ≤ 1. This produces a sequence of points z1, z2, . . . with

Im(z1) < Im(z2) < . . .

As earlier, Im(zn) is of the form Im(z)/|cz + d|2, and any such sequence must be finite. That is, inversion
and translation by 1Z eventually put z into the fundamental domain for Γθ.

Given γ ∈ Γθ, choose z in the interior of the fundamental region, and let δ be a composition of inversions
and translations by 2Z so that δ−1γz is back in the fundamental domain. Then δ−1γ = ±12, so γ = ±δ.
Since the inversion squares to −12, γ ∈ Γθ. ///
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