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1. Fundamental domain for I' = SLy(Z) on $)

The simplest beginning choice of discrete subgroup I' of G = SLs(R) is
I' = SLy(Z) = {2-by-2 integer matrices with determinant 1}

Both for use below and to show that SLs(Z) is a large group, note:
[1.0.1] Claim: Given relatively prime integers c, d, there are integers a,b such that ((Cl Z) erl.

Proof: For any integers c,d, there are integers m, n such that
greatest common divisor ¢,d = m-c+n-d

Here the greatest common divisor is 1, so take a = n, b = —m, and then ad — bc = 1. ///
To be able to draw a picture of the quotient, we take an archaic approach which nevertheless succeeds in
this case, namely, we find a fundamental domain for I' on $), meaning to find a nice set of representatives

for the quotient. Second, see how the edges of the fundamental domain are glued together when mapped to
the quotient T'\$.

[1.0.2] Claim: Every I'-orbit in $ has a representative in
— 1
F={ze9:]:>1 [Re(s)| < 5}

More precisely, each orbit has a unique representative in the standard fundamental domain

F={ze9:]s>1, —%SRe(z)<%}U{zeﬁ:|z|:1,Re(z)§0}

Proof: From above, for (Ccl Z) el

a b Im z
I =
m (c d) (2) lez + d|?

The set of complex numbers cz + d is a subset of the lattice Z - z + Z C C. Since it is a discrete subgroup, it
has (at least one) smallest (in absolute value) non-zero element.

Thus, inf |cz + d| = min|cz + d| > 0, taking the infimum or minimum over relatively prime c,d, which we
have observed are exactly the lower rows of elements of I'. Then

[ — - <
I d T " g &
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Thus, for fixed z € 9,

I a b - Imz Imz -
suplm | = (z)—supm—rnax'czfd|2 00

Thus, in each T-orbit there is (at least one) point z assuming the maximum value of Imz on that orbit.

a b

Since Im (c d) (2) = Imz/|cz + d|?, for z giving maximal Imz in its orbit, it must be that

lcz+d| > 1
for all ¢, d relatively prime. Thus, for example, for d = 0 there is the inversion
0 -1
O
Thus, |12z 4 0] > 1, so for Imz maximal in its T-orbit, |z| > 1.

We can adjust any z € $) by

[1 n](z):z—i—n (for n € Z)
0 1
to normalize —1/2 < Re(z) < 1/2.

So take |z| > 1 and |Re(z)| < 1/2 and show that |cz+d| > 1 for all ¢,d. Break z into its real and imaginary
parts z = x 4+ 4y. Then

lcz +d)? = (cx+d)?+y* = A(a® +y?) + 2cdx +d* > A2 + %) — |ed| + dP

1 c? 2 9, 12 1
- o > _
4)+ 1 led| +d* > (|| 4)

Thus, for |¢| > 2, we have |cz +d| > 1 when |z| > 1 and |z| < 1/2.

> (|2 -

For ¢ = 0, necessarily d = £1, and the only corresponding elements of I' are
+1 n
0 =+1

The only z’s with |z| > 1 and |z| < 1/2 that can be mapped to each other by such group elements are
—% + 1y and % + iy. We whimsically keep the former as our chosen representative.

For ¢ = +1,
lcz+d* = 2zd+d* + |2 > —|d| +d*+1 > 1 (for d € Z)

In fact, for |x| < 1/2, there is a strict inequality

2ed + d? + |2]* > —|d| +d*+1

Y
—_

so [cz +d| > 1. When |x| = 1/2, still —|d| +d? + 1 > 1, except for d = 0, +1.

Thus, first without worrying about strictness of the inequalities, |cz +d| > 1 for |2| > 1 and |z| < 1/2, and
the set F' contains (at least one) representative for every orbit. What remains is to eliminate duplicates.

We have already observed that the only duplicates for |z| > 1 have |z| = 1/2, and z — z + 1 maps the
x = —1/2 line to the z = 1/2 line.
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Now consider |z| = 1. For |z| < 1/2, the only cases where |cz + d| = 1 are with ¢ = +1 and d = 0, which
correspondes to matrices

a bY _[x #1] _[1 2] [0 +1 (for some n € Z)
c d) |1 o] " |o 1| |F1 o0 sotme n
For |z| = 1, the inversion z — —1/z maps z = x + iy to
1 o _ .
—— = —Z/|z|* = =z = —z+iy
z

Thus, for |z| < 1/2, the only one among these products that maps z back to the fundamental domain is
exactly the inversion z — —1/z. This inversion identifies the two arcs

1
{lef=1and -2 <2<0} {lz]=1and 0<z<}

[N

Thus, we should include only one or the other of these two arcs in the strict fundamental domain.

Last, with |z| = 1 and |z| = 1/2, there are exactly four group elements modulo +15 (the center {£1s}
acts trivially) that map z to the closure of the fundamental region. These are: the identity, one of the
translations z — z=+1, the inversion z — —1/z, and the composite of the translation and the inversion. That
is, in addition to the identity,

11 0 -1 1 -1] [0 -1 1 V3 —
[0 1], [1 O]’ [0 1]-[1 0] map—i—i—T to the boundary of F

and

1 -1 0 —1 1 1] [o -1 1 iv3 =
[O 1}7 [1 0}, [0 1}'{1 O} mapi—i—T to the boundary of F

Thus, in the quotient I'\§), the identification of the sides z = £1 creates a (topological) cyclinder, and the
identification of the two arcs on the bottom closes the bottom of the cylinder. Thus, topologically, we have a
cylinder closed at one end, which is a disk. But the non-euclidean geometry (if we were to pay more attention
to details) suggests that the top of the cylinder is infinitely far away, and the radius of the cylinder goes to
0 as one goes toward the open top end, so it is more accurate to think of the quotient I'\$) as a raindrop

shape. ///

2. Inversion and translation generate S Ly(Z)

0 -1

[2.0.1] Claim: The inversion (long Weyl element) w = (1 0

generate I' = SLy(Z).

) and translations ((1) 711) with n € Z

Proof: Again use the fact that Z - z + Z is a lattice in C. In particular, there is no infinite sequence of
decreasing sizes |c1z+dy| > |caz+da| > ... with integers ¢;, d;. Thus, there is no infinite increasing sequence
of heights

y Y
< < ...
lc1z + dq|? lcoz + da|?
Since Im( (CCL 2) (2’)) = ﬁ, this implies that there is no infinite increasing sequence
Im(y12) < Im(y22) < ... (for v; €T)
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This promises that the following procedure does eventually put every point z € § inside the standard
fundamental domain for I'.

Given z € ), translate z to 2 satisfying |[Re(z1)| < . If [21] > 1, stop: 2 is in the fundamental domain. If
|z1| < 1, apply the inversion, noting

-1 I
I (1) = Gy
Z1 |Zl|
Continue: translate —1/z; back to zo in the strip. If |z2| > 1, stop. If |22| < 1, invert. Translate back to z3

in the strip, and so on. The sequence Im(z;) < Im(z2) < ... must be finite, so the process terminates after
finitely many steps.

> Im(z) (since |z1] < 1)

Thus, given v € I, take z in the interior of the fundamental domain, and let § be a finite product of
inversions and integer translations so that 6~z is back in the fundamental domain. Since z is in the
interior, 6 'y = #£1,. Since w? = —1y, necessarily 7 is expressible in terms of inversions and integer
translations. ///

[2.0.2] Remark: The number of steps require to move a given z € § into the fundamental domain is not
simple to describe. This complication is visible in pictures of the tiling of the upper half-plane by images of
the fundamental domain.

3. Fundamental domain for T'y and T'(2)

The determination of the standard fundamental domain F' for I'(1) = SLy(Z) allows explicit determination
of fundamental domains for finite-index subgroups such as the principal congruence subgroups

T(N) = {(i Z) € SLy(Z) : (‘i Z) - (é ?) mod N}

by choosing coset representatives v; for I'(IN) in I'(1), and then[1]

fundamental domain for I'(N) = U%F

It is useful that I'(V) is exactly the kernel of the group homomorphism

a b amod N bmod N
SLy(Z) — SLa(Z/N) by <c d)%(cmod]\f dmOdN>

so is normal in T'(1).

For the important special choice 2l

Ty = {(‘C’ 2) € SLy(Z) - (‘CL Z) = <(1) ?) mod 2 or (‘CL Z) = ((1) é) mod 2}

[ Since $ = UwEF(l) ~+F, for representatives ; with I'(1) = [J; I'(N)~;,

9= UwFw= U wF= U UmF= U v(LiJ%F)

ver(y) veU, T(N)vi veD(N) i YET(N)

2 This subgroup 'y is important because it appears in sums-of-squares problems, the simplest application of theta
series to seemingly elementary number-theory problems.
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- T U (? ‘(1)>.r(2)

the coset-representative oriented choice of fundamental domain can be adjusted to prove the corollary that
Ty is generated by z — —1/z and z — z + 2, as below.

[3.0.1] Remark: The following assertion holds without assuming p is prime, but all we need at the moment
is p = 2, in any case. Further, the surjectivity of SLo(Z) — SL2(Z/2) is easy to observe directly, since, for

example, the elements
1 0 11 1 0 0 —1 1 -1 0 1
0 1 0 1 11 1 0 1 0 -1 1

surject to SLy(Z/2).
[3.0.2] Claim: For p prime, the natural map
SLy(Z) — SLa(Z/p)  is surjective

Proof: Let q be the quotient map Z — Z/p. First, given u, v not both 0 in Z/p, we will find relatively prime
¢,d in SLy(Z) such that q¢ = v and gd = v.
For v & pZ, there is 0 # d € R such that gd = v. Consider the conditions on ¢ € R

c=wumod p and c=1modd
As d ¢ pZ, by the maximality of the ideal pZ there are x € Z and pm € pZ such that zd + pm = 1. Let

¢ = zdu + pm. From xd + pm = 1, xd = 1 mod pm and pm = 1 mod d, so this expression for c¢ satisfies the
two congruences conditions. In particular, gc = u, and since ¢ = 1 mod d it must be that ged(c,d) = 1.

For v = 0 in Z/p, necessarily u # 0, and we reverse the roles of ¢, d in the previous paragraph.

Thus, there are coprime c,d in Z whose images mod p are u,v. For integers s,t there exist a,b such that
ged(s, t) = as — bt. The coprimality of ¢, d implies that there are a,b in R such that ad — bc = 1. That is,

b
(‘C‘ d)GSLz(Z),and
a b * %
(c d) - <u v) mod p

Further adjustment to accommodate the upper row is more straightforward: Given (2 Z) in SLy(Z/p),

and letting <(Cl b) also denote its image in SLo(Z/p),

d

Gy G-l D=(mm)-G7)

The right-hand side is in SLy(Z/p), so, in fact, it must be of the form ((1) i), and
-1
ros a b 1 -ty (10 mod
w v) \c d o 1) \o 1 p
1t a b\ _ (r s mod
0 1 c d)  \u v 0P

5

So
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giving the surjectivity. ///
[3.0.3] Claim: #SLy(Z/p) = (p*> — 1)p for prime p.
Proof: First, count GLo(Z/p). This is the number of ordered bases for the vector space (Z/p)? over Z/p,

since an element of GL3(Z/p) sends one basis to another, is transitive on ordered bases, and g € GLo(Z/p)
fixes a basis vy, vo only for g = 15.

The first basis element v; can be any non-zero vector in (Z/p)?, giving p? — 1 choices. For each such choice,
the second basis element can be anything not on the Z/p-line spanned by v, giving p?> — p choices. Thus,

#GLa(Z/p) = (p* = 1)(p* — p)-
The determinant map surjects GL2(Z/p) — (Z/p)*, and has kernel SLy(Z), so the index of SLo(Z/p) is
#(Z/p)* = p— 1, and the cardinality is as claimed. ///
[3.0.4] Corollary: T'(2) has six coset representatives in I'(1):

1 0 11 1 0 0 -1 1 -1 0 1

0 1 0 1 11 1 0 1 0 -1 1
Proof: The index is (22 — 1)2 = 6. The six listed matrices are in SLy(Z) and are distinct mod 2. ///

[3.0.5] Corollary: T'y has three coset representatives in T'(1):

1) G ()

Proof: The index is 3, since I'y is index 2 above I'(2). The three listed matrices are in SLy(Z) and are not

only distinct mod 2 but also do not differ mod I'(2) merely by multiplication by <(1) 75 > ///

[3.0.6] Corollary: A fundamental domain for T'g is

Fp = {z€9 : |z| 2 1and |Re(2)] < 1}

Proof: With standard fundamental domain
F ={ze€$ : |z >1and |Re(z) < £}

for T'(1), the coset representatives for I’y in T'(1) give a fundamental domain

, 11 10
Poro(l Dro(l 9

for Ty. [.. iou ...] pictures! We will symmetrize this into a more easily-describable form. With hindsight,

GG ()
GY) G G o)=6)0 )

6

by
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The point is that (1 1) <O _1> F is understandable as a translate of the inverted F.

0 1 1 0
. 1 1 1 -1 .
Move the right half of (0 1)F U 1 0 F left by z — z — 2, so that the two halves are symmetric
about the imaginary axis. This produces the region claimed in the theorem. ///

4. Generators for I'y

[4.0.1] Corollary: Inversion z — —1/z and translation z — z + 2 generate I'y.

Proof: Given z € §, translate z by 2Z to |[Re(z)| < 1. If |2| > 1, stop. If not, invert, and then translate
back to |[Re(z)| < 1. This produces a sequence of points 21, 22, ... with

Im(z1) < Im(z2) < ...

As earlier, Im (z,,) is of the form Im (z)/|cz + d|?, and any such sequence must be finite. That is, inversion
and translation by 1Z eventually put z into the fundamental domain for T'y.

Given vy € T'y, choose z in the interior of the fundamental region, and let 6 be a composition of inversions
and translations by 27Z so that § !z is back in the fundamental domain. Then §~!'v = %15, so v = +4.
Since the inversion squares to —1g, v € T'y. ///




