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In this very brief introduction, we omit discussion of Hecke operators, Poincaré series, and theta series.

1. Automorphy condition, Fourier expansion, cuspforms

An elliptic (holomorphic) modular form of level one and weight 2k is a holomorphic function f on the upper
half-plane H meeting the automorphy condition

f(γz) = (cz + d)2k · f(z) (for z ∈ H and γ =

(
a b
c d

)
∈ SL2(Z))

with γz = az+b
cz+d , and meeting the growth condition that it is bounded on the closure of the standard

fundamental domain
F = {z ∈ H : |z| > 1, |Re(z)| < 1

2}

The function

j : SL2(Z)× H −→ C× by j(

(
a b
c d

)
, z) −→ cz + d

is the cocycle. When context makes the details clear, the modifier elliptic is often dropped. [1]

f |2kγ = f(γz) · (cz + d)−2k (with γ =

(
a b
c d

)
)

for arbitrary complex-valued functions f on H, allowing the automorphy condition to be rewritten as

f |2kγ = f (for all γ ∈ SL2(Z))

[1.0.1] Note: The holomorphic modular forms of weight 2k for SL2(Z) form a complex vector space under
value-wise sums. Also, the product of a weight 2k form and a weight 2k′ form gives a weight 2k + 2k′ form.

[1.0.2] Remark: The modifier elliptic modular refers to the fact that the function is on H, as opposed
to some other homogeneous space, and is holomorphic, as opposed to meeting some other local analytic
condition. Level one refers to the automorphy requirement for all γ ∈ SL2(Z) rather than some smaller or
different subgroup of SL2(R).

[1] Traditional terminology is that f → f |2kγ is the slash operator, although this name fails to suggest any meaning

other than reference to the notation itself. In fact, obviously f(z)→ f(γz)(cz + d)−2k is a left translation operator,

albeit complicated by the automorphy factor. That is, this is a right action of SL2(Z) on functions on H, while the

group action of SL2(Z) on H is written on the left.
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[1.0.3] Remark: Boundedness in the closure of the fundamental domain does not imply boundedness on H,
because modular forms are not quite invariant under SL2(Z), but only almost invariant, with the cocycle
making things more complicated.

[1.1] Fourier expansions The upper-triangular element γ =

(
1 1
0 1

)
∈ SL2(Z) sends z → z + 1, and

j(γ, z) = 1, so a level-one modular form f has the property

f(z + 1) = f(γz) = j(γ, z)2k · f(z) = 12k · f(z) = f(z)

That is, modular forms are periodic in x = Re(z), with period 1. Thus, as functions of z, modular forms
have Fourier expansions in x, with coefficients depending on y = Im(z):

f(x+ iy) =
∑
n∈Z

cn(y) e2πinx

Since f is holomorphic, it satisfies the Cauchy-Riemann equation( ∂
∂x

+ i
∂

∂y

)
f(x+ iy) = 0

Differentiating term-wise,

0 =
∑
n∈Z

( ∂
∂x

+ i
∂

∂y

)(
cn(y)e2πinx

)
=
∑
n∈Z

(
2πincn(y)e2πinx + ic′n(y)e2πinx

)
By uniqueness of Fourier expansions,

2πincn(y) + ic′n(y) = 0 (for all n ∈ Z)

This is a linear, constant-coefficient differential equation for cn(y):

c′n(y) + 2πncn(y) = 0

Thus,
cn(y) = constant × e−2πny

and the Fourier expansion of a (holomorphic) modular form is of the form

f(z) =
∑
n∈Z

cn e
2πinz (constants cn ∈ C)

[1.1.1] Remark: Fourier expansions of modular forms are sometimes called q-expansions, with q = e2πiz.

[1.2] Fourier expansions and growth condition

Use the standard notation
An � Bn

for the assertion that |An| ≤ C ·Bn for some constant C.

[1.2.1] Proposition: A modular form f(z) =
∑
n∈Z cne

2πinz has cn = 0 for n < 0, and |cn| � e2πn for
n ≥ 0, with implied constant depending on f .
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Proof: Let |f(z)| ≤ C for z in the fundamental domain. Then the usual expression for the nth Fourier
component gives

|cn|e−2πny =
∣∣∣ ∫ 1

2

− 1
2

e−2πinxf(x+ iy) dx
∣∣∣ ≤ ∫ 1

2

− 1
2

∣∣∣e−2πinxf(x+ iy)
∣∣∣ dx ≤ ∫ 1

2

− 1
2

1 · C dx ≤ C

That is,
|cn| ≤ e2πny · C

As y → +∞ with z ∈ F , we find cn = 0 for n < 0. For n ≥ 0, taking y = 1 gives the estimate. ///

[1.2.2] Remark: The estimate |cn| � e2πn is very bad, but useful in preliminaries.

[1.3] Cuspforms A modular form with 0th Fourier coefficient 0 is a cuspform.

This innocent cuspform condition, beyond holomorphy, automorphy, and the growth condition, has important
ramifications later.

[1.3.1] Theorem: (Hecke) A weight 2k holomorphic cuspform f has exponential decay

|f(x+ iy)| �f e−2πy (as y → +∞)

with implied constant depending on f . The Fourier coefficients cn of f satisfy

|cn| � nk

Proof: Using the preliminary bound |cn| � e2πny from above,

|f(z)| �
∑
n≥1

e2πn e−2πny =
∑
n≥1

e−2πn(y−1) =
e−2π(y−1)

1− e−2π(y−1)

by summing the geometric series, giving the exponential decay. Since

|Im(

(
a b
c d

)
z)| =

Im(z)

|cz + d|2

the function yk · |f(z)| is SL2(Z)-invariant, rather than merely satisfying the automorphy condition. Due to
the exponential decay in the fundamental domain, yk · |f(z)| is surely bounded in the fundamental domain.
By SL2(Z)-invariance, yk · |f(z)| is bounded on H.

For any y > 0,

|cn · e−2πny| ≤
∫ 1

2

− 1
2

∣∣∣e−2πinx f(x+ iy)
∣∣∣ dx �f y−k

That is, |cn| �f y
−ke2πny. The bounding expression blows up as y → 0+ and as y → +∞, but we can find

its minimum: solve

0 =
∂

∂y

(
y−ke2πny

)
= −ky−k−1e2πny + 2πny−ke2πny = (−k + 2πny)y−k−1e2πny

The minimizing y = k/2πn gives

|cn| �
( k

2πn

)−k
e2πn· k

2πn = nk ·
(2πe

k

)k
giving the asserted bound. ///

[1.3.2] Remark: [Hecke 1937]’s bound given above was improved by [Rankin 1939] and [Selberg 1940].

[Ramanujan 1916]’s and [Petersson 1930]’s conjecture that |cp| ≤ 2pk−
1
2 for prime p and weight 2k cuspforms,

was proven by [Deligne 1974] as application of his completion of proof of the Weil conjectures.
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2. Explicit example: holomorphic Eisenstein series

One normalization of (holomorphic) Eisenstein series is

E2k(z) = 1
2

∑
coprime c,d

1

(cz + d)2k

Legitimate analogues of an integral test show that this is absolutely convergent, and uniformly so for z in
compacts, for 2k ≥ 4. Thus, E2k is holomorphic. [2]

[2.0.1] Remark: Unless 2k is an integer, there are serious problems with the definition of the 2kth powers.
When 2k ≥ 3 is an odd integer, the pairs (c, d) and (−c,−d) produce terms that cancel each other, and the
expression is identically 0.

As earlier, direct computation shows that

E2k(γz) = (cz + d)2kE2k(z) (with γ =

(
a b
c d

)
)

Namely, with γ =

(
A B
C D

)
,

E2k(γz) = 1
2

∑
coprime C,D

1

(C az+b
cz+d +D)2k

= (cz + d)2k
∑

coprime C,D

1

(C(az + b) +D(cz + d))2k

= (cz + d)2k
∑

coprime C,D

1(
(Ca+Dc)z + (Cb+Dd))2k

and (
A B
C D

)(
a b
c d

)
=

(
∗ ∗

Ca+Dc Cb+Dd

)
Thus, the map (C,D) → (Ca + Dc,Cb + Dd) is a bijection on the set of coprime integers, and we have

(cz + d)2kE2k(z). [3]

The leading fraction and the coprimality condition are elementary shadows of a more meaningful expression,

E2k(z) =
∑

γ∈Γ∞\Γ

1

(cz + d)2k
(with γ =

(
a b
c d

)
)

[2] An infinite sum
∑
n≥1 fn of holomorphic functions, if uniformly absolutely convergent on compacts, is again

holomorphic. This follows from Morera’s theorem, that a function f is holomorphic if its integrals over small

triangles are 0. Namely, any given triangular path γ traces out a compact set, so, given ε > 0, there is N such

that
∑
n≥N |fn(z)| < ε for all z on γ, and the integral of this tail over γ is at most ε times the length of γ. Since the

finite sum
∑
n≤N fn is holomorphic, its integral over γ is 0. Thus, the integral over every triangle is smaller than

every positive real, so is 0.

[3] The same computation demonstrates the cocycle relation j(gh, z) = j(g, hz)j(h, z) for g, h ∈ SL2(R) and z ∈ H.

This certifies that the action f → f |2kγ has the associativity

(f |2kγ)|2kδ = f |2k(γδ)

necessary for this to be a legitimate right action.
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where Γ = SL2(Z), Γ∞ = {
(
∗ ∗
0 ∗

)
∈ Γ}. Indeed, for integers c, d to be the lower row of an element γ ∈ Γ,

necessarily c, d are coprime. With even integer 2k, changing c, d for −c,−d does not change (cz+d)2k. And,

given

(
a b
c d

)
and

(
a′ b′

c d

)
in Γ,

(
a′ b′

c d

)(
a b
c d

)−1

=

(
a′ b′

c d

)(
d −b
−c a

)
=

(
∗ ∗

cd− dc ∗

)
=

(
∗ ∗
0 ∗

)
∈ Γ∞

proving the bijection.

So E2k(z) satisfies the automorphy condition.

Thus, E2k(z) meets the holomorphy condition and the automorphy condition. Demonstration that it is
bounded in the closure of the standard fundamental domain would complete proof that it is an elliptic
modular form.

This demonstration is postponed till after computation of the Fourier coefficients of holomorphic Eisenstein
series below.

3. Divisor/dimension formula, applications

A useful relation on the orders of vanishing of an elliptic modular form f of weight 2k for SL2(Z) is produced
via the argument principle, by path-integration of f ′(z)/f(z) around the boundary of a height-T truncation

FT = {|z| ≥ 1, |Re(z)| ≤ 1
2 , Im(z) ≤ T}

of the standard fundamental domain F .

The divisor of a function is the set of it zeros, counting order-of-vanishing, that is, counting multiplicities.
[4] Less usually, the order of vanishing at i∞, νf (i∞), of f(z) =

∑
n cne

2πinz is the smallest no such that
cn = 0 for n < no. Still, this is consistent with the usual notion by viewing the Fourier expansion as a power
series in q = e2πiz.

[3.0.1] Theorem: Let νf (z) be the order of vanishing of not-identically-zero f at z ∈ H. Including only an
irredundant collection of representatives for SL2(Z)\H,

νf (i)

2
+

νf (ρ)

3
+ νf (i∞) +

∑
other z

νf (z) =
2k

12

where ρ is a cube root of unity in H and f is weight 2k. (Proof in following section.)

This divisor relation yields important corollaries.

[3.1] The first cuspform A small further preparation: Ramanujan’s ∆(z)-function is a non-zero constant
multiple of E3

4 − E2
6 , which the proof of the following shows to be not identically zero. The choice of the

[4] As usual in complex analysis, at a point zo ∈ H, the order of vanishing νf (zo) of a holomorphic function f is the

smallest no so that the ntho power series coefficient of f at zo is non-zero. That is, with

f(z) =

∞∑
n=0

cn (z − zo)n

the order (of vanishing) of f at zo is the smallest no such that cno 6= 0.
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multiplying constant is usually to make ∆(z) have Fourier expansion (with vanishing 0th Fourier coefficient,
and) 1st Fourier coefficient 1:

∆(z) = 1 · e2πiz +
∑
n≥2

τ(n) e2πinz

The higher Fourier coefficients are sometimes denoted τ(n) for reasons of tradition. When we compute the
Fourier coefficients of E2k, we will see that they are of the form

E2k(z) = 1 · e2πi·0·z +
∑
n≥1

cn e
2πinz

Granting this, since there are no negative-index Fourier components,

E4(z)3 − E6(z)2 = (1 + higher)3 − (1 + higher)2 = (1 + higher)− (1 + higher)

= vanishing 0th Fourier component + higher Fourier components

Thus, granting this feature of the Fourier expension of Eisenstein series, the constant multiple ∆(z) of
E4(z)3 − E6(z)2 is indeed a cuspform.

[3.1.1] Corollary: The spaces M2k of modular forms of weight 2k for SL2(Z) are {0} for 2k < 0 or 2k an
odd integer. In small non-negative weights: M0 = C and M2 = {0}, while for even integer weights 2k ≥ 4,

M2k = C · E2k ⊕ ∆ ·M2k−12

That is, for weights up through 22, 

M0 = C
M2 = {0}
M4 = C · E4

M6 = C · E6

M8 = C · E8

M10 = C · E10

M12 = C · E12 ⊕ C ·∆
M14 = C · E14

M16 = C · E16 ⊕ C ·∆E4

M18 = C · E18 ⊕ C ·∆E6

M20 = C · E20 ⊕ C ·∆E8

M22 = C · E22 ⊕ C ·∆E10

Proof: For odd integers 2k (momentarily resisting the suggestion of the notation that it’s an even integer),
and f ∈M2k,

f(z) = f(
−z + 0

0 · z − 1
) = f(

(
−1 0
0 −1

)
z) = (0 · z − 1)2k · f(z) = (−1) · f(z)

so f(z) = 0.

For even integer 2k, the point is that, for small non-negative even integers 2k, it is not easy to meet the
condition

ni
2

+
nρ
3

+ ni∞ +
∑

other z

nz =
2k

12

with non-negative integers n∗.
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To begin the more serious discussion, for 2k = 0, all orders of vanishing must be 0, since they are non-
negative integers. Constants are obviously in M0. The trick is that, for a holomorphic modular form f of
weight 0, f(z) − f(zo) vanishes at zo for every zo ∈ H. Thus, f(z) is identically equal to f(zo), that is, is
constant.

For 2k = 2, there is no collection of orders of vanishing combining to give the required 2k/12 = 1/6, so
M2 = {0}.

For 2k = 4, on one hand, the only way to get 4/12 = 1/3 is

0

2︸︷︷︸
at i

+
1

3︸︷︷︸
at ρ

+ 0︸︷︷︸
at i∞

+
∑

other z

0 =
4

12

On the other hand, we are granting ourselves that the holomorphic Eisenstein series E4 is in M4, so evidently
E4(ρ) = 0, and the vanishing is just first-order. Given f ∈ M4, take zo ∈ H not in the Γ-orbit of ρ, and
consider

f2 = f − f(zo)

E4(zo)
· E4

By design, f2 vanishes at zo:

f2(zo) = f(zo) −
f(zo)

E4(zo)
· E4(zo) = 0

Such vanishing can occur only for f2 identically zero, so f is a constant multiple of E4.

Similarly, for 2k = 6, 8, 10, there is only one way to satisfy the divisor relation:

1

2︸︷︷︸
at i

+
0

3︸︷︷︸
at ρ

+ 0︸︷︷︸
at i∞

+
∑

other z 0 =
6

12

0

2︸︷︷︸
at i

+
2

3︸︷︷︸
at ρ

+ 0︸︷︷︸
at i∞

+
∑

other z 0 =
8

12

1

2︸︷︷︸
at i

+
2

3︸︷︷︸
at ρ

+ 0︸︷︷︸
at i∞

+
∑

other z 0 =
10

12

and E2k ∈ M2k. The same argument as for M4 shows that every element of M6,M8,M10 is a constant
multiple of E6, E8, E10.

Things change at M12, since 12/12 = 1: there is no numerical obstacle to vanishing at i∞ and other points,
in addition to the special points i and ρ. Still, E12 is present, and we are granting in advance that its Fourier
expansion is of the form

E12(z) = 1 · e2πi·0·z +
∑
n≥1

an e
2πinz

Given f ∈M12 with Fourier expansion

f(z) =
∑
n≥0

bn e
2πinz

substract a multiple of E12 to make the 0th Fourier coefficient 0: consider

f2(z) = f(z) − b0 · E12
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Thus, νf2(i∞) = 1, and f2 is a cuspform, by definition. The divisor relation shows that f2 has no other
zeros, unless by mischance f2 is identically 0.

To prove existence of a not-identically-zero cuspform of weight 12, note that E3
4 − E2

6 is weight 12, and has
0th Fourier coefficient 0, so is a candidate. To show that E3

4 −E2
6 is not identically 0, recall from above that

E4(ρ) = 0 and does not vanish otherwise, while E6(i) = 0 and does not vanish otherwise. Thus, E3
4 − E2

6

cannot vanish at either ρ or i, so is not identically 0. Up to normalizing constant, ∆ = E3
4 − E2

6 .

By the divisor relation, ∆ only vanishes at i∞, and there to order 1. Now we will see that M12 = CE12 +C∆.
Given f ∈M12, as before, subtract a multiple E12 to make the 0th Fourier coefficient of f2 = f − cE12 be 0.
Then divide f2 by ∆, taking advantage of the fact that ∆ does not vanish in H, and vanishes only to first
order at i∞. Thus, f2/∆ is in M0 = C, proving that f2 is a multiple of ∆, and M12 = CE12 + C∆.

Similarly, now that the non-zero cuspform ∆ is identified, a similar argument gives the structure of M2k, for
2k ≥ 4 so that Eisenstein series converge. Namely, given f ∈ M2k, subtract a multiple of E2k to obtain a
cuspform of weight 2k, and then divide by ∆ to obtain a modular form of weight 2k − 12. This shows that
M2k = CE2k + ∆M2k−12, as claimed. ///

For present purposes, an isobaric polynomial P (X,Y ) ∈ C[X,Y ] (with weights 4, 6) is a polynomial with
the property that there is an integer 2k such that every monomial XaY b appearing has the property that
4a+ 6b = 2k. This has the effect that P (E4, E6) is a modular form of weight 12.

[3.1.2] Corollary: Every holomorphic modular form for SL2(Z) is an isobaric polynomial in E4, E6.

Proof: The assertion is vacuously true for weight 0 since holomorphic modular forms of weight 0 are
constants. Holomorphic modular forms of weight 2 are all identically 0. At weights 4 and 6, all modular
forms are multiples of the respective Eisenstein series.

At weight 8, the only modular form is E8, but also E2
4 has weight 8. Both have 0th Fourier coefficient 1, so

E8 = E2
4 . Similarly, E10 = E4 · E6.

We already showed that ∆ is a constant multiple of the isobaric polynomial E3
4 − E2

6 . Since E12 − E3
4 is a

cuspform of weight 12, it is a multiple of ∆, proving that E12 has an isobaric polynomial expression in terms
of E4 and E6.

Given 12 < 2k ∈ 2Z, find non-negative integers a, b such that 4a+ 6b = 2k. Then E2k−Ea4Eb6 is a cuspform,
and

E2k − Ea4Eb6
∆

∈ M2k−12

By induction, E2k is an isobaric polynomial in E4, E6. Given f ∈M2k, subtract a multiple of E2k to produce
a cuspform f2, allowing division by ∆ to put f2/∆ in M2k−12, completing the induction. ///

[3.1.3] Corollary: For every weight 2k, the space of holomorphic cuspforms is finite-dimensional.

Proof: The space of cuspforms of weight 2k is ∆ ·M2k−12, and M2k−12 is cuspforms together with multiples
of E2k−12, for 2k − 12 ≥ 4. ///

[3.1.4] Remark: [Ramanujan 1916] conjectured that the nth Fourier coefficient τ(n) of ∆ satisfies

|τ(p)| ≤ 2p
11
2 (for prime p)

and
τ(mn) = τ(m) · τ(n) (for coprime m,n)

and
τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) (for prime p)
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[Mordell 1917] prove the latter two properties, using operators systematically investigated in [Hecke 1937],

nowadays called Hecke operators. As noted earlier, [Deligne 1974] proved |cp| ≤ 2pk−
1
2 for prime p and

weight 2k cuspforms, as consequence of his completion of proof of the Weil conjectures.

[3.1.5] Remark: In this context, the modular function or modular invariant j(z) is defined to be a constant
multiple of E3

4/∆, since now we know that ∆ 6= 0 in H, and that ∆ has a simple pole at i∞ and vanishes at
ρ since E4(ρ) = 0.

[3.1.6] Remark: Yes, there is some conflict with the notation that j can refer to the cocycle, as well as to
the modular function, but context usually clarifies.

4. Proof of divisor/dimension formula

This proof of
ni
2

+
nρ
3

+ ni∞ +
∑

other z

nz =
2k

12

is an application of the argument principle, exploiting the near-invariance of modular forms.

Proof: Let f be a not-identically-zero holomorphic modular form of weight 2k. Let

FT = {|z| ≥ 1, |Re(z)| ≤ 1
2 , Im(z) ≤ T}

be the truncation at height T of the standard fundamental domain F , and γ a path tracing its boundary.

On one hand, by the argument principle,∫
γ

f ′(z)

f(z)
dz = 2πi

∑
z inside FT

νf (z)

In fact, points on the boundary itself require special treatment, especially the points i and ρ. Treatment of
this is postponed to the end of the proof.

On the other hand, the individual pieces of the path integral nearly cancel each other out, except for some
manageable pieces, as follows.

The easiest part is that the integrals along the upward path along Re(z) = + 1
2 and downward path along

Re(z) = − 1
2 cancel each other, because f(z + 1) = f(z).

Let f(z) =
∑
n≥no

cn e
2πinz, with cno

6= 0. That is, νi∞(f) = no. The path-integral along the top of ∂FT ,

from 1
2 + iT to − 1

2 + iT is an integral in the coordinate q = e2πinz around a circle: letting g(q) = f(z),∫ − 1
2

1
2

f ′(x+ iT )

f(x+ iT )
dx =

∫ − 1
2 +iT

1
2 +iT

g′(q) · dqdz
g(q)

dz =

∫
C

g′(q)

g(q)
dq

with C a circle of radius e−2πT at 0, traced clockwise. The Fourier expansion of f in z is a power series
expansion in q, so by the argument principle, and by the convention about νf (i∞),∫ − 1

2

1
2

f ′(x+ iT )

f(x+ iT )
dx = −2πi · νf (i∞)− 2πi

∑
z:Im(z)>T

νf (z)

The path from the cube-root of unity ρ to i is mapped by z → −1/z to that running backward from the
sixth root of unity to i, but these do not quite cancel each other, because f is not invariant under z → −1/z.
Rather, differentiating f(−1/z) = z2k · f(z) gives

f ′(−1/z) · 1

z2
= 2kz2k−1f(z) + z2kf ′(z)

9
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so
f ′(−1/z) = 2kz2k+1f(z) + z2k+2f ′(z)

and
f ′(−1/z)

f(−1/z)
d(−1/z) =

2kz2k+1f(z) + z2k+2f ′(z)

z2kf(z)

dz

z2
=

2k

z
+
f ′(z)

f(z)

Thus, the integral from the cube root of 1 to the sixth root of 1 cancel except for the −2k/z. Letting z = eit

as t goes from 2
3π to 1

2π,∫ 1
2π

2
3π

(f ′(z)
f(z)

dz − f ′(−1/z)

f(−1/z)

)
d(−1/z) =

∫ 1
2π

2
3π

−2k

e−it
d(eit) =

∫ 1
2π

2
3π

−2ik dt = 2ik · π
6

= 2πi · 2k

12

Thus, if there were no vanishing on the boundary, evaluating the integral around the truncated fundamental
domain in two ways gives ∑

z Im(z)<T

νf (z) = −νf (i∞)−
∑

z:Im(z)>T

νf (z) +
2k

12

or

νf (i∞) +
∑
z∈F

νf (z) =
2k

12

Now we consider points on the boundary of FT . Any vanishing on the top edge Im(z) = T can be avoided
by adjusting T slightly. Any vanishing on the vertical edges Re(z) = ± 1

2 can be easily accommodated by
slightly deforming the contour γ inward on the left side Re(z) = − 1

2 to exclude a point zo with f(zo) = 0,
and deforming the contour slightly outward on the right side Re(z) = 1

2 to include zo + 1. Similarly, for any
point on the bottom part of the boundary, except for i and ρ, at which f vanishes, the left half of that arc
can be deformed slightly inward, and the right half outward, to avoid the points. [5] Thus, the ordinary
argument principle is sufficient for these cases.

[4.1] Points i, ρ on the boundary

Unfortunately, there is no deformation of the contour to avoid the points i, ρ while counting order-of-
vanishing. We first consider the situation at i.

To simplify the discussion, use the Cayley map z → z−i
−iz+1 to convert the arc along |z| = 1 to a straight

line segment σ along the real axis, and replace f by its composition g with the inverse z → z+i
iz+1 to the

Cayley map. This does not alter order-of-vanishing. In these coordinates modify σ traversing the interval
[−a, a] left-to-right to include a small semi-circular detour along |z| = ε in the upper half-plane. That is, the
modified path σε goes along the interval [−a,−ε] left-to-right, along the arc clockwise from −ε to +ε, and
left-to-right along the interval [ε, a].

For g(0) = 0, the logarithmic derivative g′/g has a simple pole at 0, with Laurent expansion

g′(z)

g(z)
=

ν0(g)

z
+ (holomorphic near 0)

By continuity, the limit as ε → 0+ of the integral of a holomorphic function along the modified paths σε is
just the integral along the segment σ. This leaves us explicit computation of∫

σε

dz

z
=

∫ −ε
−a

dt

t
+

∫ 0

−π

d(εeit)

eit

∫ a

ε

dt

t
= −(log a− log ε)− πi+ (log a− log ε) = −πi

[5] One might reasonably worry that there might be infinitely-many points near FT where f vanishes. However, the

compactness of any slightly larger region containing FT , and the holomorphy of f , assures that this cannot happen.

10
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That is, the limit of the integrals over paths σε excluding 0 produces 1
2 · 2πi · νg(0). Thus, the corresponding

modification of the path around the boundary of FT gives − 1
2 · 2πi · νf (i).

The point ρ is treated similarly, with slight further complications. One way to describe the outcome is to
treat ρ and ρ+ 1 separately, as follows. Here, unlike at i, we cannot completely convert the path near ρ into
straight line segments. Nevertheless, there is a well-defined angle to the boundary of F at ρ, namely, π/3.
Modifying the path-integral along the boundary by indenting upward along a small arc of radius ε > 0, and
taking a limit as ε→ 0+, produces − 1

6 · 2πi · νf (ρ), rather than the full −2πi · νf (ρ). Similarly, the limit of
slightly-indented paths around ρ+ 1 produces another − 1

6 · 2πi · νf (ρ), noting that νf (ρ+ 1) = νf (ρ).

Thus, by integrating over the boundary of FT modified by indentations of radius ε at i and ρ, and taking
the limit as ε→ 0+, we obtain

νf (i∞) +
∑
z∈F

νf (z) = −νf (i)

2
− νf (ρ)

3
+

2k

12

Moving the suitably weighted orders of vanishing at i, ρ to the left-hand side gives the divisor/dimension
formula. ///

[4.1.1] Remark: The idea that path integrals essentially running directly through a simple pole can be
construed as giving half the residue, or half the negative, depending on the direction of indentation, can be
legitimized as in the discussion of i above. The further idea, applied above to ρ and ρ+1, that path integrals
along paths having a corner with angle θ at a simple pole, can be construed as producing − θ

2π of the residue,
can likewise be legitimized. In all these cases, the underlying mechanism is that∫ θ2

θ1

d(εeit)

εeit
=

∫ θ2

θ1

i dt = (θ2 − θ1)i (independent of ε > 0)

5. Fourier expansions of holomorphic Eisenstein series

[5.0.1] Theorem: For weight 2k ≥ 4, the holomorphic Eisenstein series

E2k(z) =
∑

coprime c,d

1

cz + d

2k

has Fourier expansion

E2k(z) = 1 +
(−2πi)2k

(2k − 1)! ζ(2k)

∑
n≥1

σ2k−1(n) e2πinz

Before the important computation that determines the Fourier coefficients, two corollaries:

[5.0.2] Corollary: Given a modular form f(z) = co+
∑
n≥1 cn e

2πinz, the difference f−co ·E2k is a cuspform.

Proof: The leading Fourier coefficient of the Eisenstein series is 1, so the indicated subtraction exactly
annihilates the leading Fourier coefficient. ///

[5.0.3] Corollary: For weight 2k ≥ 4, the holomorphic Eisenstein series E2k(z) is bounded in the standard
fundamental domain, so is a elliptic modular form in the strongest sense.

Proof: The absence of negative-index Fourier terms, and an easy estimate

σ2k−1(n) ≤
∑

1≤`≤n

`2k−1 ≤ (n+ 1)2k � e2πn (as n→ +∞)

11
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give

|E2k(z) � 1 +
∑
n≥1

e2πn e−2πny ≤ 1 +
e−2πy

1− e−2πy

which is bounded for y ≥
√

3
2 . ///

Proof: We directly compute the Fourier coefficients

cn = e2πny ·
∫ 1

2

− 1
2

e−2πinx E∗2k(x+ iy) dx

of the renormalized Eisenstein series

E∗2k(z) = ζ(2k) · E2k(z) =
∑

(c,d) 6=(0,0)

1

(cz + d)2k

First, the subsum over d 6= 0 with c = 0 is literally 2ζ(2k), and this is translation-invariant, so is part of the
0th Fourier coefficient 0

Each subsum over d ∈ Z for fixed c 6= 0 is invariant under z → z + 1, so has a Fourier expansion, with nth

coefficient

e2πny ·
∫ 1

2

− 1
2

e−2πinx
∑
d

1

(cz + d)2k
dx

The integral is∫ 1
2

− 1
2

e−2πinx
∑
d

1

(cx+ d+ ciy)2k
dx = c−2k

∫ 1
2

− 1
2

e−2πinx
∑
d

1

(x+ d
c + iy)2k

dx

Aiming to unwind the sum-and-integral to have a simpler sum and an integral over R, rewrite∫ 1
2

− 1
2

e−2πinx
∑
d

1

(x+ d
c + iy)2k

dx =

∫ 1
2

− 1
2

e−2πinx
∑
`∈Z

∑
d mod c

1

(x+ `+ d
c + iy)2k

dx

and replace x by x− `, to obtain

∑
`∈Z

∫ 1
2 +`

− 1
2 +`

e−2πinx
∑

d mod c

1

(x+ d
c + iy)2k

dx =

∫
R
e−2πinx

∑
d mod c

1

(x+ d
c + iy)2k

dx

=
∑

d mod c

∫
R
e−2πinx 1

(x+ d
c + iy)2k

dx =
∑

d mod c

e2πind/c

∫
R
e−2πinx 1

(x+ iy)2k
dx

by replacing x by x − d
c in each integral. Now neither c nor d appears inside the integral, while neither x

nor y appear in the sum.

The integral can be evaluated by residues, treating x itself as a complex variable, as follows. Fix y, the
imaginary part of the original z. For n ≤ 0, the function e2πinx is rapidly decreasing as x moves into
the upper half-plane, so the indicated integral is the limit as R → +∞ of an integral left-to-right along
[−R,R] and then along an arc of a circle of radius R in the upper half-plane. This picks up residues of
x→ e−2πinx/(x+ iy)2k in the upper half-plane: there are none, so these Fourier coefficients are 0.

For n > 0, the integral can be evaluated by residues, using an arc of a circle in the lower half-plane, picking
up −2πi times the residue of x→ e−2πinx/(x+ iy)2k at −iy, namely,

−2πi

(2k − 1)!
·
( ∂
∂x

)2k−1

e−2πinx
∣∣∣
x=−iy

=
−2πi

(2k − 1)!
· (−2πin)2k−1 · e−2πny =

(2πi)2k

(2k − 1)!
n2k−1 e−2πny

12
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That is, ∫
R
e−2πinx 1

(x+ iy)2k
dx =


(2πi)2k

(2k − 1)!
n2k−1 e−2πny (for n ≥ 1)

0 (for n ≤ 0)

The sum over d mod c is a sum of the character d → e2πind/c over the finite abelian group Z/c. The
cancellation lemma says this sum is 0 unless the character is trivial, in which case it is the cardinality of the
group, namely, |c|. The character is trivial if and only c|n. Thus,

∑
d mod c

e2πind/c =

 |c| (for c|n)

0 (otherwise)

In summary, the 0th Fourier coefficient is 2ζ(2k), the negative-index Fourier coefficients are 0, and for n > 1
the Fourier coefficient is

∑
c|n

1

c2k
· |c| × (2πi)2k

(2k − 1)!
n2k−1 (for n > 1)

As c runs over positive and negative divisors of n, so does n/c, and the last expression can be simplified
somewhat by doing so:

∑
c|n

c2k

n2k

∣∣∣n
c

∣∣∣× (2πi)2k

(2k − 1)!
n2k−1 =

2(2πi)2k

(2k − 1)!

∑
0<c|n

c2k−1

Often the sum of `th powers of positive divisors of an integer n is denoted σ`(n), so the Fourier expansion of
the Eisenstein series can be written

2ζ(2k) · E2k(z) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∑
n≥1

σ2k−1(n) e2πinz

and

E2k(z) = 1 +
(2πi)2k

(2k − 1)! ζ(2k)

∑
n≥1

σ2k−1(n) e2πinz

as claimed. ///

[5.0.4] Corollary: E2
4 = E8, E4E6 = E10, and E4E10 = E6E8 = E14.

Proof: In dimensions 8, 10, 14 there are no holomorphic modular forms other than the corresponding
Eisenstein series, and the leading Fourier coefficients are always 1. ///

[5.0.5] Corollary: Granting that ζ(2k) is a rational multiple of π2k, the Fourier coefficients of Eisenstein
series are rational numbers. ///

[5.0.6] Remark: The rationality of the Fourier coefficients of holomorphic Eisenstein series is significant
in later developments. The following corollaries are slightly frivolous examples of proving number-theoretic
identities by relations among automorphic forms. Nevertheless, more serious results do use the same proof
mechanism of which these simple examples are prototypes.

13
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[5.0.7] Corollary: For positive integers N ,

σ7(N) = 2 · 7! ζ(8)

3! (2πi)4 ζ(4)
σ3(N) +

7! ζ(8)

(3!)2 ζ(4)2

∑
m+n=N

σ3(m)σ3(n) (with m,n ≥ 1)

σ9(N) =
9! ζ(10)

3! (2πi)6 ζ(4)
σ3(N) +

9! ζ(10)

5! (2πi)4 ζ(6)
σ5(N) +

9! ζ(10)

3! 5! ζ(4) ζ(6)

∑
m+n=N

σ3(m)σ5(n) (m,n ≥ 1)

Proof: The first identity comes from equating the Fourier coefficients of E2
4 = E8. A similar one arises from

E4E6 = E10. Fourier expansions without negative-index terms multiply as∑
m≥0

am e
2πimz ·

∑
n≥0

bm e
2πinz =

∑
N≥0

( ∑
m+n=N

am · bn
)
e2πiNz

From E2
4 = E8, noting that the 0th Fourier coefficients do not quite fit into the general pattern, for N ≥ 1,

equating the N th coefficients of E2
4 and E8 gives

(2πi)8

7! ζ(8)
σ7(N) = 2 · (2πi)4

3! ζ(4)
σ3(N) +

( (2πi)4

3! ζ(4)

)2 ∑
m+n=N

σ3(m)σ3(n)

Rearranging,

σ7(N) = 2 · 7! ζ(8)

3! (2πi)4 ζ(4)
σ3(N) +

7! ζ(8)

(3!)2 ζ(4)2

∑
m+n=N

σ3(m)σ3(n)

The second computation is entirely analogous. ///

[5.0.8] Remark: Also, these frivolous relations completely determine ζ(4), ζ(6), ζ(8), and ζ(10), by looking
at the relations for N = 1, 2. And since there are no cuspforms of weight 14, also ζ(14) is determined.

More generally, from [Gunning 1959/62] p. 55, Ramanujan proved the following, but with a worse error term,
since Hecke’s estimate on Fourier coefficients of cuspforms was not available. That is, in general, E2k · E2`

is probably not exactly E2k+2`, but it misses only by a cuspform:

[5.0.9] Corollary: For 2k ≥ 4 and 2` ≥ 4 and N ≥ 1,

σ2k+2`−1(N) =
(2k + 2`− 1)! ζ(2k + 2`)

(2πi)2` (2k − 1)! ζ(2k − 1)
σ2k−1(N) +

(2k + 2`− 1)! ζ(2k + 2`)

(2πi)2k (2`− 1)! ζ(2`)
σ2`−1(N)

+
(2k + 2`− 1)! ζ(2k + 2`)

(2k − 1)! (2`− 1)! ζ(2k) ζ(2`)

∑
m+n=N

σ2k−1(m) · σ2`−1(m) + O(n
2k+2`

2 ) (with m,n ≥ 1)

Proof: Up to a cuspform, E2k ·E2` = E2k+2`. Equating the N th Fourier coefficients and multiplying through
by (2k+ 2`− 1)! ζ(2k+ 2`)/(2πi)2k+2` gives the identity, with the big-O term arising from Hecke’s estimate
on the Fourier coefficients of the cuspform = E2k+2` − E2k · E2`. ///

[5.0.10] Remark: Of course, for weights 2k + 2` among 8, 10, 14, there are no cuspforms, and the error
term is exactly 0.
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6. Automorphic L-functions

[6.1] Euler product attached to ∆(z) A little later, we will prove two of the conjectures of Ramanujan
proven by Mordell, in a form applicable to all holomorphic cuspforms of for SL2(Z). First, we examine the
implications for Dirichlet series.

With ∆(z) = 1 · e2πinz +
∑
n≥1 τ(n) e2πinz the unique cuspform of weight 12 for SL2(Z), the associated

Dirichlet series is

L(s,∆) =
∑
n≥1

τ(n)

ns

The Hecke estimate |τ(n)| � n
12
2 shows that the series for L(s,∆) is absolutely convergent for Re(s) > 12

2 +1.

The weak multiplicativity τ(mn) = τ(m) · τ(n) for coprime m,n is equivalent to an Euler factorization of
L(s,∆):

L(s,∆) =
∑
n≥1

τ(n)

ns
=

∏
p prime

(
1 +

τ(p)

ps
+
τ(p2)

p2s
+
τ(p3)

p3s
+ . . .

)
The more peculiar relation

τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) (for prime p, for n ≥ 1)

gives a recursion for the τ(pn): to simplify notation, let X = p−s, observe that powers of p−s do multiply
like powers of X, and

1 · τ(pn+1)Xn+1 − τ(p)X · τ(pn)Xn + p11X2 · τ(pn−1)Xn−1 = 0 (for n ≥ 1)

For n ≥ 1, the left-hand side of the last equality is the Xn+1th term in(
1− τ(p)X + p11X2

)(
1 + τ(p)X + τ(p2)X2 + τ(p3)X3 + . . .

)
The constant component of the latter product is 1. That is,(

1− τ(p)X + p11X2
)(

1 + τ(p)X + τ(p2)X2 + τ(p3)X3 + . . .
)

= 1

That is, (
1− τ(p)

ps
+
p11

p2s

)(
1 +

τ(p)

ps
+
τ(p2)

p2s
+
τ(p3)

p3s
+ . . .

)
= 1

and

1 +
τ(p)

ps
+
τ(p2)

p2s
+
τ(p3)

p3s
+ . . . =

1

1− τ(p)

ps
+
p11

p2s

Thus, ∑
n

τ(n)

ns
=
∏
p

1

1− τ(p)

ps
+
p11

p2s

This Euler product factorization partly justifies calling
∑
n
τ(n)
ns an automorphic L-function.

Further, the discriminant of the quadratic equation

X2 − τ(p)X + p11 = 0

15
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is τ(p)2 − 4p11. From the expression of ∆ as a real constant multiple of E6
4 − E2

6 , τ(p) ∈ R. Thus, the
roots occur in complex conjugate pairs exactly when Ramanujan’s conjectured, Deligne’s proven, inequality
|τ(p)| < 2p

11
2 holds.

[6.1.1] Remark: We have given Hecke’s proof of |τ(p)| � p
12
2 , but will not attempt to follow [Deligne 1974]

to prove |τ(p)| < 2p
11
2 .

[6.1.2] Remark: We will show below that the space of weight 2k holomorphic cuspforms for SL2(Z) has a
basis of cuspforms f(z) =

∑
n≥1 cn e

2πinz with cn = 1 and whose associated Dirichlet series

L(s, f) =
∑
n≥1

cn
ns

have Euler product factorizations

L(s, f) =
∑
n≥1

cn
ns

=
∏
p

1

1− cp
ps

+
p2k−1

p2s

Having an Euler product partly justifies calling L(s, f) an automorphic L-function attached to f . The Hecke

estimate cn � n
2k
2 proves absolute convergence of L(s, f) for Re(s) > 2k

2 + 1.

[6.2] Analytic continuation and functional equation A holomorphic cuspform f(z) =
∑
n≥1 cn e

2πinz

of weight 2k for SL2(Z) has associated Dirichlet series

L(s, f) =
∑
n≥1

cn
ns

whether or not this has an Euler product.

[6.2.1] Remark: Merely copying Fourier coefficients to coefficients of a Dirichlet series accomplishes little,
without further analytic features.

We do know that f is rapidly decreasing as y → +∞, and that y
2k
2 · |f(z)| is bounded on H, so |f(z)| � y−k

as y → 0+. Thus, for Re(s) > k we have absolute convergence of the Mellin transform∫ ∞
0

ys f(iy)
dy

y

In that range, ∫ ∞
0

ys f(iy)
dy

y
=

∫ ∞
0

ys
∑
n

cn e
−2πny dy

y
=
∑
n

cn

∫ ∞
0

ys e−2πny dy

y

=
∑
n

cn
(2πn)s

·
∫ ∞

0

ys e−y
dy

y
= (2π)−s Γ(s)

∑
n

cn
ns

= (2π)−s Γ(s)L(s, f)

[6.2.2] Claim: (2π)−s Γ(s)L(s, f) has an analytic continuation to an entire function, satisfying

(2π)−(2k−s) Γ(2k − s)L(2k − s, f) = (−1)
2k
2 · (2π)−s Γ(s)L(s, f)

[6.2.3] Remark: This integral representation of L(s, f), with Gamma-factor (2π)−s Γ(s) to complete it,
plays the role for L(s, f) as did the integral representation of the completed ζ(s) in terms of θ(z).
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[6.2.4] Remark: With hindsight, seeing that the functional equation is with respect to s ↔ 2k − s, a
contemporary choice would be to renormalize to have a functional equation s↔ 1− s, as we describe below.
The latter convention is not universal.

Proof: The rapid decay of a cuspform f(x+ iy) as y → +∞ assures that part of the integral is entire:∫ ∞
1

ys f(iy)
dy

y
= entire

Meanwhile, using the automorphy condition with z → −1/z,∫ 1

0

ys f(iy)
dy

y
=

∫ 1

0

ys (iy)−2k · f(−1/iy)
dy

y
= (−1)

2k
2

∫ 1

0

ys−2k · f(−1/iy)
dy

y

= (−1)
2k
2

∫ ∞
1

y2k−s · f(iy)
dy

y
= entire

Thus,

(2π)−s Γ(s)L(s, f) =

∫ ∞
1

ys f(iy)
dy

y
+ (−1)

2k
2

∫ ∞
1

y2k−s f(iy)
dy

y
= entire

and the behavior under s↔ 2k − s is clear. ///

[6.2.5] Remark: To translate so that the functional equation is s↔ 1− s, instead of the natural but naive
normalization above, put

L(s, f) =
∑
n

cn/n
2k−1

2

ns
=
∑
n

cn

ns+
2k−1

2

The corresponding integral representation becomes

(2π)−s−
2k−1

2 Γ(s+
2k − 1

2
)L(s, f) =

∫ ∞
0

ys−
1
2

(
f(iy) · y 2k

2

) dy
y

Then one might further divide through by a constant so that the extra constant power of π disappears,
giving functional equation

(2π)−(1−s) Γ(1− s+
2k − 1

2
)L(1− s, f) = (−1)k · (2π)−s Γ(s+

2k − 1

2
)L(s, f)

[6.2.6] Remark: Thus, we have shown that automorphic L-functions L(f, s) arising from holomorphic
cuspforms for SL2(Z) have analytic continuations and functional equations. Euler product factorizations are
proven below.
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