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1. Siegel’s proof
2. Weil’s proof

[Siegel 1954] showed a very simple, if somewhat unmotivated, argument for the product expansion of ∆(z).
[Weil 1968] reproved the product expansion by a more complicated method related to the converse theorems
in [Weil 1967], the latter arising as plausibility checks on the Taniyama-Shimura conjecture.

We reproduce both arguments. As expected, both make heavy use of various coincidences. Both use the
one-dimensionality of the space of holomorphic cusp forms of weight 12 for SL2(Z) and generation of SL2(Z)
by translation z → z + 1 and inversion z → −1/z. A function of e2πiz is clearly invariant under z → z + 1.
It remains to prove that the product expression must be proven to have the functional equation of a weight
12 modular form under z → −1/z.

1. Siegel’s proof

Siegel’s argument is simple but ad-hoc. With η the 24th root of ∆, with q = e2πiz, taking a logarithm,
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Let

f(w) = cotw · cotw/z

and let ν run over values (n + 1
2 )π for 0 ≤ n ∈ Z. Then f(νw)/w has simple poles at w = ±πk/ν and at
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and a triple pole at at w = 0 with residue − 1
3 (z + z−1). Let γ be the path tracing counter-clockwise the

outline of the parallelogram with vertices 1, z,−1,−z. By residues,
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The parameters n or ν only appear in the contour integral on the left-hand side. To evaluate it, let as
n → +∞. In this limit, f(νw) is uniformly bounded on γ, and has limiting values on the sides (excluding
the vertices, where there are discontinuities) 1,−1, 1,−1, respectively. The limit of the contour integral is∫
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This gives the functional equation. ///

2. Weil’s proof

As in [Weil 1968], consider the Dirichlet series [1]
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The completed version
Λ(s) = (2π)−s Γ(s)L(s)

has functional equation inherited from ζ(s):

Λ(−s) = Λ(s)

Noting that ζ(2)/2π = π/12,
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The power series in q = e2πiz with the same coefficients is
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Fourier-Mellin inversion gives
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Following Hecke and Weil, move the vertical line to Re(s) = −σ, picking up residues at 1, 0,−1:
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[1] Weil was well aware that L(s) is essentially the Mellin transform of the constant coefficient in the Laurent

expansion in s at s = 1 of the Eisenstein series Es =
∑ ys

|cz|+d|2s . The nature of that constant coefficient is part of

the Kronecker limit formula.
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The functional equation Λ(−s) = Λ(s) allows conversion of the integral on Re(s) = −σ into
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Using F (z) = πiz/12− log η(z), this is
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which simplifies to
log η(z) = log η(−1/z)− 1

2 log(z/i)

Exponentiating and taking the 24th power:

η24(z) = η24(−1/z) · (z/i)−12

or
η24(−1/z) = z12 · η24(z)

That is, η24 has the two functional equations

η24(z + 1) = η24(z) η24(−1/z) = z12 · η24(z)

and goes to 0 as Im(z)→ +∞. Since SL2(Z) is generated by the matrices(
0 −1
1 0

) (
1 1
0 1

)
giving the maps z → −1/z and z → z + 1, evidently η is a holomorphic cuspform of weight 12, with leading
Fourier coefficient 1. Thus, it is ∆(z), and we have the product expansion

∆(z) = η24(z) = e2πiz
∏
n≥1

(1− e2πinz)

[2.0.1] Remark: In fact, Weil’s connection between a simple converse theorem and a product formula is
anomalous.
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