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1. Special values ζ(2n) in a Laurent expansion
2. Special values L(2n, χ) in Laurent expansion of ℘(z)

1. Special values ζ(2n) in a Laurent expansion

Via Liouville’s theorem, by cancelling poles, and so on,

f(z) =
∑
n∈Z

1

(z + n)2
(secretly f(z) =

π2

sin2 πz
, but we don’t use this)

satisfies
f ′2 = 4f2(f − π2)

The Laurent coefficients of f(z) at 0 have direct relations to the special values ζ(2), ζ(4), . . ., producing
algebraic relations among these values, as follows.

Let g(z) = f(z)− 1
z2 , so g(z) is holomorphic at z = 0, and

g(z) = g(0) +
g′(0)

1!
z +

g′′(0)

2!
z2 + . . .

=
∑
n 6=0

1

n2
+
∑
n6=0

−2

1! · n3
z +

∑
n 6=0

(−2)(−3)

2! · n4
z2 +

∑
n 6=0

(−2)(−3)(−4)

3! · n5
z3 +

∑
n 6=0

(−2)(−3)(−4)(−5)

4! · n6
z4 + . . .

In the odd-degree sums the ±n terms cancel, giving

f(z) =
1

z2
+ 2ζ(2) + 6ζ(4)z2 + 10ζ(6)z4 + 14ζ(8)z6 + . . .

and

f ′(z) =
−2

z3
+ 12ζ(4)z + 40ζ(6)z3 + 84ζ(8)z5 + . . .

The simplified relation f ′2 = 4f2(f − π2) from above gives a recursion to determine ζ(2n) from
ζ(2), ζ(4), . . . , ζ(2n − 2), for 2n ≥ 6, since all the Laurent coefficients of 0 = f ′2 − 4f2(f − π2) vanish:
namely, the first/lowest-degree term involving ζ(2n) is the z2n−6 term

0 = 2 · −2

z3
· (4n− 2)(2n− 2)ζ(2n) z2n−3 − 4 · 3 ·

( 1

z2

)2

· (4n− 2)ζ(2n) z2n−2 + (previous)

= −
(

4(2n− 2) + 12
)

(4n− 2) · ζ(2n) + (previous) = −(8n+ 4)(4n− 2) · ζ(2n) + (previous)

where previous is a polynomial involving ζ(2), ζ(4), . . . , ζ(2n− 2).

In fact, given that ζ(2) = π2/6 and ζ(4) = π4/90, this approach can prove

[1.0.1] Claim: ζ(2n)/π2n is rational, for 2n = 2, 4, 6, 8, . . ..

Proof: Rewrite the relation in terms of normalizations ζ(2m)/π2m. From the Laurent expansion,

π−2f(z/π) =
1

z2
+

2ζ(2)

π2
+

6ζ(4)

π4
z2 +

10ζ(6)

π6
z4 +

14ζ(8)z6

π8
+ . . .
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Replacing f(z) by F (z) = π−2f(z/π) gives [1] F ′(z) = π−3f ′(z/π), and the relation f ′2 = 4f2(f − π2)
becomes

π6F ′2 = 4π4F 2(π2F − π2)

giving a relation with rational coefficients:

F ′2 = 4F 2(F − 1)

This relation gives a recursion with rational coefficients for the values ζ(2n)/π2n. Non-vanishing of the
coefficient of ζ(2n) at its first appearance was checked above, so the recursion does not collapse. ///

[1.0.2] Remark: The above discussion clumsily mirrors more direct expression of special values of ζ in
terms of Bernoulli numbers, better seen via Riemann’s keyhole/Hankel contour expression for ζ(−n) and
the functional equation for ζ(s). Nevertheless, it has some interest as a warm-up for the following example.

2. Special values L(2n, χ) in Laurent expansion of ℘(z)

As the algebraic relation f ′2 = 4f2(f − π2) for f(z) =
∑
n 1/(z + n)2 gave relations among the Laurent

coefficients of f involving special values ζ(2n), the Weierstraß relation ℘′2 = 4℘3 − 60g2℘ − 140g3 gives
relations among the Laurent coefficients of ℘(z). These Laurent coefficients are less elementary than the
special values ζ(2n). For special lattices these are special values of Hecke L-functions, discussed below.

With fixed lattice Λ,

℘(z) =
1

z2
+
∑

0 6=λ∈Λ

( 1

(z − λ)2
− 1

λ2

)
=

1

z2
+ (holomorphic at z = 0)

With g(z) = ℘(z)− 1
z2 ,

g(z) = g(0) +
g′(0)

1!
z +

g′′(0)

2!
z2 + . . .

=
∑
λ6=0

( 1

λ2
− 1

λ2

)
+
∑
λ 6=0

−2

1! · λ3
z+

∑
λ6=0

(−2)(−3)

2! · λ4
z2 +

∑
λ6=0

(−2)(−3)(−4)

3! · λ5
z3 +

∑
λ6=0

(−2)(−3)(−4)(−5)

4! · λ6
z4 + . . .

In the odd-degree sums the ±λ terms cancel, so

℘(z) =
1

z2
+
∑
λ6=0

(−2)(−3)

2! · λ4
z2 +

∑
λ6=0

(−2)(−3)(−4)(−5)

4! · λ6
z4 + . . . =

1

z2
+
∑
n≥2

(2n− 1)gnz
2n−2

with gn =
∑

06=λ∈Λ
1
λ2n . The Weierstraß relation gives a recursion for g4, g5, . . . in terms of g2, g3: the

lowest-degree coefficient in which gn appears is that of z2n−6, and this is

0 =
(

2 · −2

z3
· (2n− 2)(2n− 1)gnz

2n−3
)
−
(

3 · 1

z4
· (2n− 1)gnz

2n−2
)

+ (previous)

= −(2n− 1)
(

4(2n− 2) + 3
)
gnz

2n−6 + (previous) = −(2n− 1)(8n− 5)gnz
2n−6 + (previous)

The coefficient of gn is non-zero, so gn is a polynomial in g2, g3, . . . , gn−1 with rational coefficients,
independent of the lattice.

[1] Since f(z) =
∑ 1

(z+n)2
= π2

sin2 πz
, in fact F (z) = 1

sin2 z
.
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[2.1] Some Hecke L-functions The lattice Λ = Z · i + Z is the ring Z[i] of Gaussian integers. It is
Euclidean, so is a principal ideal domain. The Galois norm is N(a + bi) = a2 + b2, and units in Z[i] must
have norm ±1, so the only units are ±1,±i.

The Dedekind zeta function for o = Z[i] is

ζo(s) =
∑

06=α∈o/o×

1

|α|2s

The ring Z[i] has multiplicative [2] maps to the unit circle in C×, namely

χ : α −→
( α
|α|

)n
For various reasons, we want χ to be invariant by units, that is, χ(η · α) = χ(α) for units η ∈ {±1,±i},
entailing that χ be of the form χ4n(α) = (α/|α|)4n. With such χ, the corresponding unramified Hecke
L-functions for Z[i] are

L(s, χ4n) =
∑

06=α∈Z[i]/Z[i]×

χ4n(α)

|α|2s
=

∑
06=α∈Z[i]/Z[i]×

(α/|α|)4n

|α|2s

Meanwhile, the functions gn = gn(Z[i]) for this lattice are

gn =
∑

a,b∈Z2−(0,0)

1

(a+ bi)2n
= 4 ·

∑
06=α∈Z[i]/Z[i]×

1

α2n
(vanishing unless n ∈ 2Z)

Thus,
1

4
g2n =

∑
06=α∈Z[i]/Z[i]×

1

α4n
=

∑
0 6=α∈Z[i]/Z[i]×

(α/|α|)−4n

|α|2·2n
= L(2n, χ−4n)

This is a special value of L(s, χ−4n). In this example, g3 = 0, so g4, g6, . . . are polynomials in g2 with rational
coefficients. That is, the special values L(4, χ−8), L(6, χ−12), . . . are polynomials in L(2, χ−4) with rational
coefficients.

[2.1.1] Remark: A similar discussion applies to lattices Λ = Z · z + Z where Z[z] is the ring of algebraic
integers in a quadratic extension Q(z) of Q.

[2.1.2] Remark: The idea is that, just as the special values ζ(2n) are rational except for appearance of the
single transcendental π, the lists of special values L(2n, χ) need fewer transcendentals than expected.

[2] As usual, a map χ : Z[i]→ C× is multiplicative when χ(α · β) = χ(α) · χ(β) for all α, β ∈ Z[i].
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