(April 6, 2015)

Failure of the minimum principle in Banach spaces

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

This document is

http://www.math.umn.edu/~garrett/m/complex/notes_2014-15/11b_failure_minimum_principle.pdf]

First, some related points about the discrepancies between C^{o} , C^{1} , and L^{2} :

• It is not hard to find sequences in $C^{o}[a, b]$ converging to 0 in L^{2} -metric but not convergent in $C^{o}[a, b]$. This shows that the L^{2} topology is *strictly weaker* than the sup-norm C^{o} topology.

• Existence of a *dense* subset of $C^o[a, b]$ of *nowhere differentiable* functions follows from the Baire category theorem: Let U_n be the subset of $C^o[a, b]$ consisting of f such that for all $t \in [a, b]$

$$|f(s) - f(t)| > n \cdot |s - t|$$

for some $s \in [a,b] \cap [t-\frac{1}{n}, t+\frac{1}{n}]$. We show U_n is open and dense, so by the Baire category theorem, $\bigcap_n U_n$ is dense and consists of nowhere differentiable continuous functions.

Two illustrations of the non-pathological failure of a minimum principle in *Banach* spaces (as opposed to Hilbert spaces):

• Let E be the set of continuous functions $f \in C^{o}[0,2]$ with

$$\int_0^1 f \, dx - \int_1^2 f \, dx = 1$$

The set E is *closed* and *convex*, but has *no* element of minimal norm (in contrast to the Hilbert space situation).

• Let E be the functions f in $L^1[0, 1]$ such that $\int_0^1 f \, dx = 1$. Then E is a closed convex subset with *infinitely* many elements of minimal norm (in contrast to the Hilbert space situation).