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1. Euler’s integral for Γ(s)

The Gamma function Γ(s) can be defined by Euler’s integral

Γ(s) =

∫ ∞
0

ts e−t
dt

t
(absolute convergence for Re(s) > 0)

Integration by parts proves the functional equation

Γ(s+ 1) = s · Γ(s) (for Re(s) > 0)

For 0 < s ∈ Z, the functional equation and induction show the connection to factorials:

Γ(n) = (n− 1)! (for n = 1, 2, . . .)

2. Holomorphy of integrals

It is not surprising that Γ(s) is holomorphic in the region of absolute convergence Re(s) > 0. This can
be proven by checking complex differentiability of truncated integrals, and invoking the holomorphy of
uniform-on-compact limits of holomorphic functions. Alternatively, but essentially equivalently in terms
of fundamental invocation of Cauchy’s theorem and corollaries, holomorphy can be proven via Morera’s
theorem, invoking Fubini-Tonelli to justify interchange of integrals. Both approaches are typical for proving
holomorphy of integrals with a parameter, when the integrands are holomorphic functions of the parameter.
In this section we recall some broadly applicable ideas.

[2.1] Claim: Let F (t, z) be a function of t ∈ [a, b] ⊂ R and z ∈ Ω ⊂ C with non-empty open Ω, continuous
as a function of the two variables, and holomorphic in z for each fixed t. Then

f(z) =

∫ b

a

F (t, z) dt

is holomorphic for z ∈ Ω. Further, the complex derivative is

f ′(z) =

∫ b

a

∂F

∂z
(t, z) dt
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where ∂F
∂z is the complex derivative in the second argument of F . That is, the operator of complex

differentiation passes inside the integral.

[2.2] Remark: Without compactness or similar hypothesis on the behavior in the integration variable, the
conclusion can easily fail, and in non-pathological ways, for example,

f(z) =

∫ ∞
−∞

eitz dt

1 + t2

is not holomorphic in z. The integral does not converge at all for z 6∈ R.

Proof: First, we claim that Fz and Fzz, the first and second complex derivatives of F in its second argument,
are continuous as functions of their two arguments. From Cauchy’s integral formulas, for each fixed t ∈ [a, b],
for any simple closed path γ around zo, inside Ω, for any z inside γ,

F (t, z) =
1

2πi

∫
γ

F (t, w) dw

w − z
and Fz(t, z) =

1

2πi

∫
γ

F (t, w) dw

(w − z)2

and similarly for Fzz. Given zo ∈ Ω, let B2r, Br be open balls of radius 2r, r centered at zo and so that the
closure of B2r fits inside Ω. We may as well let γ be the boundary of B2r, traversed in a positive direction.
Let Cr be the closure of Br. The continuity of F on the compact set [a, b]× Cr implies uniform continuity
on that set, and on [a, b]× γ.

Using that joint continuity, given ε > 0, take δ > 0 such that |z−zo| < δ implies |(w−z)−2− (w−zo)−2| < ε
for all w ∈ γ. Let M be the maximum of the continuous function F (t, w) on the compact [a, b]×Cr. By the
trivial estimate on the Cauchy formula integral,∣∣∣ ∫

γ

F (t, w) dw

(w − z)2
−
∫
γ

F (t, w) dw

(w − zo)2
∣∣∣ ≤ 2π2r ·M ·max

w∈γ

∣∣∣ 1

(w − z)2
− 1

(w − zo)2
∣∣∣ ≤ 2π2r ·M · ε

This gives the continuity of Fz(t, z). A nearly identical argument gives that of Fzz(t, z).

By the complex differentiability in z, for fixed zo, for every t ∈ [a, b] and z ∈ Cr,

F (t, z) = F (t, zo) + (z − zo)Fz(t, zo) +R(t, z)

where the remainder R(t, z) satisfies a uniform estimate of the form

|R(t, z)| ≤ B · |z − zo|2 (for all (t, z) ∈ [a, b]× Cr)

Thus,∣∣∣ ∫
[a,b]

F (t, z) dt −
∫
[a,b]

F (t, zo) dt
∣∣∣ ≤ ∫

[a,b]

|F (t, z)−F (t, zo)| dt ≤
∫
[a,b]

B ·|z−zo|2 dt = |b−a|·B ·|z−zo|2

Thus, ∣∣∣ ∫
[a,b]

F (t, z)− F (t, zo)

z − zo
− Fz(t, zo) dt

∣∣∣ ≤ |b− a| ·B · |z − zo| −→ 0 (as z → zo)

This proves the complex differentiability of the integral in t, and identifies the derivative as the corresponding
integral of Fz. That is, the complex differentiation in z passes inside the integral, as hoped. ///

As an example of limits of compact integrals that are still holomorphic:
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[2.3] Claim: Let F (t, z) be continuous in t ∈ (0,∞) and complex differentiable in z in non-empty open Ω.
Assume that

f(z) =

∫ ∞
0

F (t, z) dt

is absolutely convergent for all z ∈ Ω. Assume that, for every compact K ⊂ Ω,

lim
a→0+, b→+∞

∫ b

a

F (t, z) dt =

∫ ∞
0

F (t, z) dt (uniformly for z ∈ K)

That is, given compactK ⊂ Ω, given ε > 0, there exist ao, bo such that, for all z ∈ K, and for all 0 < a, a′ ≤ ao
and for all b, b′ ≥ bo, ∣∣∣ ∫ b

a

F (t, z) dt−
∫ b′

a′
F (t, z) dt

∣∣∣ < ε

Then
∫∞
0
F (t, z) dt is holomorphic in z ∈ Ω, and its complex derivative is

∫∞
0
Fz(t, z) dt.

Proof: The previous claim shows that all the truncated integrals fa,b(z) =
∫ b
a
F (t, z) dt are holomorphic.

The hypothesis is exactly that the functions fa,b converge pointwise, uniformly on compacts, to the infinite
integral. A uniform-on-compacts pointwise limit of holomorphic functions is holomorphic. ///

3. Holomorphy of Γ(s) in Re(s) > 0

The general claims of the previous section give

[3.1] Claim: The integral

∫ ∞
0

e−t ts
dt

t
is a holomorphic function of complex s for Re(s) > 0.

Proof: The cases that 0 < Re(s) ≤ 1 and 1 ≤ Re(s) are somewhat different, due to the corresponding
behaviors of ts near 0 and near +∞.

For Re(s) ≥ 1, with the logarithm that is real-valued on (0,+∞), for 0 < b < b′,

|ts−1| = |e(s−1) log t| = eRe((s−1) log t) = e(Re(s)−1) log t = tRe(s)−1

Then ∣∣∣ ∫ b

0

e−t ts
dt

t
−
∫ b′

0

e−t ts
dt

t

∣∣∣ ≤ ∫ b′

b

e−t tRe(s) dt

t
≤
∫ ∞
b

e−t tRe(s) dt

t

≤
∫ ∞
b

e−t/2 e−t/2tRe(s) dt

t
=

∫ ∞
b

e−t/2 dt× sup
t≥b

e−t/2tRe(s)−1 = b−t/2 × sup
t≥b

e−t/2tRe(s)

Given compact K, there is σ1 such that s ∈ K implies Re(s) ≤ σ1. The sup is finite, so we have exponential
decay in b, giving the uniform estimate

∣∣∣ ∫ b

0

e−t ts
dt

t
−
∫ b′

0

e−t ts
dt

t

∣∣∣ ≤ b−t/2 × sup
t≥b

e−t/2tσ1

for s ∈ K. For 0 < Re(s) ≤ 1, the convergence of
∫ 1

0
e−t ts dt/t implies that

lim
a,a′→0

∫ a′

a

e−t ts
dt

t
−→ 0

Then similar estimates give the uniform-on-compacts convergence. ///
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4. Meromorphic continuation of Γ(s) to C
From the functional equation, we get a meromorphic continuation of Γ(s) to the entire complex plane, except
for poles at non-positive integers −n. The poles are simple, with residue (−1)n/n! at −n.

[... iou ...]

5.
∫∞

0
e−tzts dt

t
= z−sΓ(s)

The identity ∫ ∞
0

ts e−ty
dt

t
=

Γ(s)

ys
(for y > 0 and Re(s) > 0)

for y > 0 first follows for Re(s) > 0 by replacing t by t/y in the integral. Then∫ ∞
0

ts e−tz
dt

t
=

Γ(s)

zs
(for Re(z) > 0 and Re(s) > 0)

by complex analysis, since both sides are holomorphic in s and agree on the positive reals.

The latter identity allows non-obvious evaluation of a Fourier transform. Namely, let

f(x) =

{
xα · e−x (for x > 0)
0 (for x < 0)

For Re(α) > −1 this function is locally integrable at 0, and in any case is of rapid decay at infinity. We can
compute its Fourier transform:∫

R
e−2πiξx f(x) dx =

∫ ∞
0

e−2πiξx xα+1 e−x
dx

x
=

∫ ∞
0

xα+1 e−x(1+2πiξ) dx

x
=

Γ(α+ 1)

(1 + 2πiξ)α+1

Further, Fourier inversion gives the non-obvious∫
R
e2πiξx

1

(1 + 2πiξ)α+1
dξ =

1

Γ(α+ 1)
·
{
xα · e−x (for x > 0)
0 (for x < 0)

For α ∈ Z, the same conclusion can be reached by evaluation by residues.

6. Euler’s Beta integral in terms of Γ

[6.1] Claim: Euler’s beta integral

B(a, b) =

∫ 1

0

xa−1 (1− x)b−1 dx

is expressible in terms of Γ as

B(a, b) =

∫ 1

0

xa−1 (1− x)b−1 dx =
Γ(a) Γ(b)

Γ(a+ b)

Proof: Replacing x by t
t+1 = 1− 1

t+1 in the integral gives∫ 1

0

xa−1 (1− x)b−1 dx =

∫ ∞
0

( t

t+ 1

)a−1 (
1− t

t+ 1

)b−1 dt

(t+ 1)2
=

∫ ∞
0

ta
( 1

t+ 1

)a+b dt
t
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Use the gamma identity in the form

( 1

t+ 1

)s
=

1

Γ(s)

∫ ∞
0

e−u(t+1) us
du

u

to rewrite the beta integral further as

1

Γ(a+ b)

∫ ∞
0

∫ ∞
0

ua+b ta e−u(t+1) du

u

dt

t
=

1

Γ(a+ b)

∫ ∞
0

∫ ∞
0

ub ta e−u e−t
dt

t

du

u
=

Γ(a) Γ(b)

Γ(a+ b)

as claimed. ///

[6.2] Remark: If we add another similar factor to the Beta integral, we have Euler’s integral representation
for hypergeometric functions, namely,

F (α, β, γ; z) =
1

B(β, γ − β)

∫ 1

0

xβ−1 (1− x)γ−β−1 (1− xz)−α dx

This F is the 2F1 hypergeometric function, whose series definition is

F (α, β, γ; z) = 1 +
a b

c

z

1!
+
a(a+ 1) b(b+ 1)

c(c+ 1)

z2

2!
+ . . . =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!

The notation (a)n is the Pockhammer symbol.

7. Γ(s) · Γ(1− s) = π/ sin πs

To prove this, take 0 < Re(s) < 1 for convergence of both integrals, and compute

Γ(s) · Γ(1− s) =

∫ ∞
0

∫ ∞
0

us e−u · v1−s e−v du
u

dv

v
=

∫ ∞
0

∫ ∞
0

u e−u(1+v) v1−s
du

u

dv

v

by replacing v by uv. Replacing u by u/(1 + v) (another instance of the basic gamma identity) and noting
that Γ(1) = 1 gives ∫ ∞

0

v−s

1 + v
dv

Replace the path from 0 to ∞ by the Hankel contour Hε described as follows. Far to the right on the real
line, start with the branch of v−s given by (e2πiv)−s = e−2πisv−s, integrate from +∞ to ε > 0 along the
real axis, clockwise around a circle of radius ε at 0, then back out to +∞, now with the standard branch of
v−s. For Re(−s) > −1 the integral around the little circle goes to 0 as ε→ 0. Thus,∫ ∞

0

v−s

1 + v
dv = lim

ε→0

1

1− e−2πis

∫
Hε

v−s

1 + v
dv

The integral of this integrand over a large circle goes to 0 as the radius goes to +∞, for Re(−s) < 0. Thus,
this integral is equal to the limit as R→ +∞ and ε→ 0 of the integral

from R to ε
from ε clockwise back to ε
from ε to R
from R counterclockwise to R
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This integral is 2πi times the sum of the residues inside it, namely, that at v = −1 = eπi. Thus,

Γ(s) · Γ(1− s) =

∫ ∞
0

v−s

1 + v
dv =

2πi

1− e−2πis
· (eπi)−s =

2πi

eπis − e−πis
=

π

sinπs

as claimed. ///

[7.1] Corollary: Γ(s) 6= 0 for all s ∈ C. ///

8. Duplication: Γ(s) · Γ(s+ 1
2
) = 21−2s ·

√
π · Γ(2s)

To prove this, from the Eulerian integral definition,

Γ(s) · Γ(s+ 1
2 ) =

∫ ∞
0

e−t ts
dt

t
·
∫ ∞
0

e−u us+
1
2
du

u

Replacing t by t/u ∫ ∞
0

∫ ∞
0

e−(
t
u+u) ts u

1
2
du

u

dt

t

In the Fourier transform identity

e−πξ
2

=

∫
R
e−2πix·ξ e−πx

2

dx

let ξ =
√
t/
√
u and replace x by x/

√
π:

e−π
t
u =

1√
π

∫
R
e
−2πix·

√
t√

u
√
π e−x

2

dx

and replace t by t/π to obtain

e−
t
u =

1√
π

∫
R
e
−2ix·

√
t√
u e−x

2

dx

Substituting the Fourier transform expression in place of e−
t
u gives

1√
π

∫ ∞
0

∫ ∞
0

∫
R
e
−2ix·

√
t√
u e−x

2

e−u ts u
1
2 dx

du

u

dt

t

Replace x by x
√
u, and then u by u/(x2 + 1):

1√
π

∫ ∞
0

∫ ∞
0

∫
R
e−2ix·

√
t e−u(x

2+1) ts u dx
du

u

dt

t
=

1√
π

∫ ∞
0

∫ ∞
0

∫
R
e−2ix·

√
t 1

x2 + 1
e−u ts u dx

du

u

dt

t

=
1√
π

Γ(1)

∫ ∞
0

∫
R
e−2ix·

√
t 1

x2 + 1
ts dx

dt

t
=

1√
π

∫ ∞
0

∫
R
e−2ix·

√
t 1

x2 + 1
ts dx

dt

t

The inner integral over x can be evaluated by residues: it captures the negative of the residue of
x→ e−2ix

√
t/(x2 + 1) in the lower half-plane, giving∫

R
e−2ix·

√
t 1

x2 + 1
dx = −2πi · e−2i(−i)

√
t · 1

(−i)− i
= π e−2

√
t

Summarizing, and then replacing t by t2 and t by t/2:

Γ(s)·Γ(s+ 1
2 ) =

√
π

∫ ∞
0

e−2
√
t ts

dt

t
= 2
√
π

∫ ∞
0

e−2t t2s
dt

t
= 21−2s

√
π

∫ ∞
0

e−t t2s
dt

t
=
√
π 21−2sΓ(2s)

as claimed. ///
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