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1. Euler’s integral for I'(s)

The Gamma function I'(s) can be defined by Euler’s integral

o dt
I'(s) = / tset " (absolute convergence for Re(s) > 0)
0

Integration by parts proves the functional equation
I'(s+1) = s-T(s) (for Re(s) > 0)
For 0 < s € Z, the functional equation and induction show the connection to factorials:

I'(n) = (n—1)! (forn=1,2,...)

2. Holomorphy of integrals

It is not surprising that I'(s) is holomorphic in the region of absolute convergence Re(s) > 0. This can
be proven by checking complex differentiability of truncated integrals, and invoking the holomorphy of
uniform-on-compact limits of holomorphic functions. Alternatively, but essentially equivalently in terms
of fundamental invocation of Cauchy’s theorem and corollaries, holomorphy can be proven via Morera’s
theorem, invoking Fubini-Tonelli to justify interchange of integrals. Both approaches are typical for proving
holomorphy of integrals with a parameter, when the integrands are holomorphic functions of the parameter.

In this section we recall some broadly applicable ideas.

[2.1] Claim: Let F(t,z) be a function of ¢ € [a,b] C R and z € Q C C with non-empty open €, continuous

as a function of the two variables, and holomorphic in z for each fixed ¢. Then
b
f(z) = / F(t,z) dt
is holomorphic for z € €. Further, the complex derivative is
b
OF
'"(z) = —(t,2) dt
e = [ G
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where %—f is the complex derivative in the second argument of F. That is, the operator of complex
differentiation passes inside the integral.

[2.2] Remark: Without compactness or similar hypothesis on the behavior in the integration variable, the
conclusion can easily fail, and in non-pathological ways, for example,

f2) = /OO ett® dt

oo 1422
is not holomorphic in z. The integral does not converge at all for z ¢ R.

PTOOf.' First, we claim that F, and F,,, the first and second complex derivatives of F in its second argument,
are continuous as functions of their two arguments. From Cauchy’s integral formulas, for each fixed ¢ € [a, b],
for any simple closed path « around z,, inside €, for any z inside ~,

1 F(t d 1 F(t d

Flts) = = [EEWd g Re) = 7/ F(t, w) dw
2mi ), w—z 2mi J, (w—z)

and similarly for F,,. Given z, € Q, let By, B, be open balls of radius 2r,r centered at z, and so that the

closure of By, fits inside 2. We may as well let v be the boundary of Bs,., traversed in a positive direction.

Let C, be the closure of B,. The continuity of F on the compact set [a,b] x C,. implies uniform continuity

on that set, and on [a, b] X 7.

Using that joint continuity, given ¢ > 0, take § > 0 such that |z — z,| < § implies |(w—2) 72— (w—2,) 72| < ¢

for all w € . Let M be the maximum of the continuous function F'(¢,w) on the compact [a,b] x C,. By the
trivial estimate on the Cauchy formula integral,

F(t d F(t d 1 1
‘/L);U_/(L);U < 272r - M - max 5 — 5| < 2m2r-M-e
5 (w—2) 5 (w—2) wey | (w — 2) (w — z,)

This gives the continuity of F.(t,z). A nearly identical argument gives that of F,, (¢, z).

By the complex differentiability in z, for fixed z,, for every ¢ € [a,b] and z € C,.,
F(t,z) = F(t,20) + (2 = 20) Fz(t, %) + R(t, 2)
where the remainder R(¢,z) satisfies a uniform estimate of the form
|R(t,2)] < B-|z— 2,|? (for all (t,2) € [a,b] x C})

Thus,
’/ F(t,z) dt—/ F(t,z) dt‘ < / |F(t,2)—F(t, z,)| dt < / B-|z—z|? dt = |b—a|-B-|z—z|?
la,b] la,b] [a,b] la,b]

Thus,

‘ F(t,z) — F(t,20)
[a,b] zZ— 2o

—Fz(t,zo)dt‘ < |b—al-Blz—z| — 0 (as z = z,)

This proves the complex differentiability of the integral in ¢, and identifies the derivative as the corresponding
integral of F,. That is, the complex differentiation in z passes inside the integral, as hoped. ///

As an example of limits of compact integrals that are still holomorphic:
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[2 3] Claim: Let F(t,2) be continuous in ¢ € (0, 00) and complex differentiable in 2 in non-empty open Q.

Assume that o
/ P
0

is absolutely convergent for all z € ). Assume that, for every compact K C ,

b o
lim / F(t,z)dt = / F(t, z)dt (uniformly for z € K)
0

a—0t,b—=+o0 J,

That is, given compact K C 2, given € > 0, there exist a,, b, such that, for all z € K, and for all 0 < a,a’ < a,

and for all b,b" > b,,
b %
‘/ F(t, ) dt—/ Fit2) di| < e

Then [ F(t,z) dt is holomorphic in z € €2, and its complex derivative is [, F.(t,z) dt.

Proof: The previous claim shows that all the truncated integrals f, ;(z f F(t,z) dt are holomorphic.
The hypothesis is exactly that the functions f,;, converge pointwise, unlformly on compacts, to the infinite
integral. A uniform-on-compacts pointwise limit of holomorphic functions is holomorphic. ///

3. Holomorphy of I'(s) in Re(s) > 0

The general claims of the previous section give

. o dt
[3.1] Claim: The integral / e 't n is a holomorphic function of complex s for Re(s) > 0.
0
Proof: The cases that 0 < Re(s) < 1 and 1 < Re(s) are somewhat different, due to the corresponding
behaviors of t* near 0 and near +o0.
For Re(s) > 1, with the logarithm that is real-valued on (0, +o0), for 0 < b < ¥/,

|ts_1‘ — ‘e(s—l)logt| — eRe((s—l)logt) (Re(s)—1)logt _ tRe(s)—l

= €

b’ b’ oo
‘/ —t ts wLe / et s @ < / et tRe(s) ﬁ < / et tRe(s) @
0 t b t b t

(o]
< / o 1/2 o—t/2Re(s) dt _ / et/ it x sup e—t/2REO=1 Z pt/2 y qup e t/2Re(s)
b 3 b t>b t>b

Then

Given compact K, there is o1 such that s € K implies Re(s) < oq. The sup is finite, so we have exponential
decay in b, giving the uniform estimate

b b
‘/ e tts @ — / et s ﬁ‘ < bt/2 x sup e t/2¢on
0 t 0 t t>b

for s € K. For 0 < Re(s) < 1, the convergence of fol et 1% dt/t implies that

’
a

dt
lim et — — 0
a,a’—0 [, t
Then similar estimates give the uniform-on-compacts convergence. ///
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4. Meromorphic continuation of I'(s) to C

From the functional equation, we get a meromorphic continuation of I'(s) to the entire complex plane, except
for poles at non-positive integers —n. The poles are simple, with residue (—1)"/n! at —n.

[.. iou..]

5. [ et & = 27T (s)

The identity

° dt r
/ e W — = () (for y > 0 and Re(s) > 0)
0 t y°
for y > 0 first follows for Re(s) > 0 by replacing ¢ by ¢/y in the integral. Then
*° dt r
/ t5e v = (5) (for Re(z) > 0 and Re(s) > 0)
0 2°

by complex analysis, since both sides are holomorphic in s and agree on the positive reals.
The latter identity allows non-obvious evaluation of a Fourier transform. Namely, let

@.e™® (for z > 0)

o) = {g (for z < 0)

For Re(«) > —1 this function is locally integrable at 0, and in any case is of rapid decay at infinity. We can
compute its Fourier transform:

/ =2 £(0) dpr = /OO p—2mike patl dx _ /OO o+l p—z(1+2mie) dx _ I'(a + 1) .
R 0 T 0 T (14 2mig)ot

Further, Fourier inversion gives the non-obvious

/62”5”;(15 1 far.e™ (forz>0)
R (1+2mi&)ett > D(a+1) |0 (for x < 0)

For a € Z, the same conclusion can be reached by evaluation by residues.

6. Euler's Beta integral in terms of I’

[6.1] Claim: Euler’s beta integral

1
B(a,b) = / 27V (1 —2) "t de
0
is expressible in terms of I" as

[(a)T(b)

B(a,b) = /0 2V (1 —z)tde = (@ <)

Proof: Replacing = by 7&-%1 =1- t—%l in the integral gives

1 e} 00
t a—1 t b—1 dt 1 a+b dt
/ xail (1 - x)bil dx - / ( ) (1 N ) - / ta ( )
0 o \t+1 t+1 (t41)2 0 t+1 t
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Use the gamma identity in the form

1 \s 1 e du
_ —u(t+1) ,, s 4%
(t + 1) I'(s) /0 ¢ -

to rewrite the beta integral further as

1 /OO /00 ua+b e efu(t+l) dﬂ@ _ 1 /OO /00 ub 14 e~ 67t ﬁdiu _ F(a) F(b)
Tla+b) Jo Jo u t Tla+b) Jo Jo t u T(a+10)

as claimed. ///

[6.2] Remark: If we add another similar factor to the Beta integral, we have Euler’s integral representation
for hypergeometric functions, namely,

1
Flo,B,7i2) = = | / 251 (1= 21 (1= 22)=° da

B(Bv/y_ﬁ

This F is the o F7 hypergeometric function, whose series definition is

O‘aﬁav;z) =14+—5+

abz ala+1)b(b+1) 22 = (@) (), 2"
E( c 1! c(c+1) 20 72

n=0

The notation (a), is the Pockhammer symbol.

7. T(s) - T'(1 —s) =n/sinws

To prove this, take 0 < Re(s) < 1 for convergence of both integrals, and compute

du dv s du dv
I'(s)-T(1—s) / / wet plmsev 4L / / ue v+ y v

by replacing v by uv. Replacing u by u/(1 + v) (another instance of the basic gamma identity) and noting
that T'(1) = 1 gives
%) v
dv
/0 1+w
Replace the path from 0 to oo by the Hankel contour H. deS(_:ribed as follows. Far to the right on the real
line, start with the branch of v=% given by (e2™v)~* = e~ 2™y~ integrate from +oo to ¢ > 0 along the

real axis, clockwise around a circle of radius € at 0, then back out to 400, now with the standard branch of
v~*%. For Re(—s) > —1 the integral around the little circle goes to 0 as € — 0. Thus,

o —s 1 —s
/ " dv = lim / ' v
o 14w en01—e72mis [ 14w

The integral of this integrand over a large circle goes to 0 as the radius goes to +oo, for Re(—s) < 0. Thus,
this integral is equal to the limit as R — +o0o and € — 0 of the integral

from R to ¢

from e clockwise back to &
from € to R

from R counterclockwise to R
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This integral is 277 times the sum of the residues inside it, namely, that at v = —1 = ™. Thus,
© ps 27 . 271 T
I'(s) - I'(1—s) = dv = — . (e™)7°% = - — =
() T —s) /0 14w v 1— e—2mis (e™) eTis — g—mis sinms
as claimed. ///
[7.1] Corollary: T(s) # 0 for all s € C. ///

: - 1y __ 1-2s
8. Duplication: I'(s) -I'(s +35) = 27 - {/m - '(2s)
To prove this, from the Eulerian integral definition,

e dt e d
F(S)~F(S+%) _ /O efttsi,/o efuuer%iu

t U

//67<%+u>tsu%djﬂ
o Jo u t

6771'52 _ /6727riw-§ 6771'9:2 dx
R

let & = v/%/y/u and replace = by x//7:

t ]_ _ P Vit 2
e = —/ e 2T Znm e
VT Jr

— 2
e u = \/»/ 2iz- 7o Vu _x dw

Substituting the Fourier transform expression in place of e gives

///ﬂmﬁeﬂ?@f”su%dmdfuﬁ
NG u t

Replace x by z+v/u, and then u by u/(x? + 1):

L / / / e—2iz~\/ze—u(m2+1) t5udx dj @ / / / —2iz/i —— 1 e~ 45w d dj ﬂ
VT o Jo Jr t \f 2410
1 ° ) 1 dt
_ 1 —2ix\/t t5 dr = / / —2ix\/t 5 de 2
)/0 /]Re 2241 +1 t \f 132 1

The inner integral over x can be evaluated by residues: it captures the negative of the residue of
x — e~ 2@V /(22 4 1) in the lower half-plane, giving

/ —2izi 1 de = —2ri- e 2i=0VE, # — e 2Vt
R 22 +1 (—i) —1¢

Replacing ¢ by t/u

In the Fourier transform identity

and replace ¢ by ¢/ to obtain

Summarizing, and then replacing ¢ by t? and t by ¢/2:

I'(s)-I(s+ \f/ —Z\fts o Q\f/ o2t 425 @ — 91-2s ﬁ/ e—ttQS? _ ﬁ21_28F(25)
0

as claimed. /]




