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The contour-integration trick illustrated here appeared in one of Riemann’s proofs of analytic continuation
of ζ(s). It almost immediately proves that values of ζ(s) at non-positive integers are rational, and shows the
connection to the Laurent coefficients of 1/(et − 1) at t = 0.

[1.1] An integral representation of Γ(s) · ζ(s) Although the integral representation of ζ(s) using a
theta function is perhaps better in the long run, there is a more elementary one. As always,

ζ(s) =

∞∑
n=1

1

ns
(in Re(s) > 1)

[1.2] Claim: For Re(s) > 1,

Γ(s) · ζ(s) =

∫ ∞
0

ts

et − 1

dt

t

Proof: Expand a geometric series, exchange sum and integral, and change variables:∫ ∞
0

ts

et − 1

dt

t
=

∫ ∞
0

ts e−t

1− e−t
dt

t
=

∫ ∞
0

ts
(∑
n≥1

e−nt
) dt
t

=
∑
n≥1

∫ ∞
0

ts e−nt
dt

t

=
∑
n≥1

1

ns

∫ ∞
0

ts e−t
dt

t
= Γ(s) ·

∑
n≥1

1

ns
= Γ(s) · ζ(s)

as claimed. ///

[1.3] Keyhole/Hankel contour The keyhole or Hankel contour is a path from +∞ inbound along the real
line to ε > 0, counterclockwise around a circle of radius ε at 0, back to ε on the real line, and outbound back
to +∞ along the real line.

The usual elementary application is to evaluation of integrals similar to
∫∞
0

ts dt
t2+1 , with 0 < Re(s) < 1. In

such an example, analytically continuing counterclockwise around 0 has no impact on the denominator, but,
significantly, the numerator changes by a factor e2πis, since

ts = (|t| · eiθ)s = |t|s · eiθs (and θ goes from 0 to 2π)

We want the out-bound value of ts to be real-valued for real s, so the inbound version of ts must be actually
be ts · e2πis.

The absolute value of the integrand goes to 0 as |t| → 0, so the integral over the small circle goes to 0 as
ε→ 0, as do the integrals to and from 0, ε along the real line.

Thus, letting Hε be the Hankel contour with circle of radius ε > 0,

lim
ε→0

∫
Hε

ts dt

t2 + 1
= lim

ε→0

(∫ ε

+∞

(t · e2πi)s dt
t2 + 1

+ (integral over little circle) +

∫ +∞

ε

ts dt

t2 + 1

)
= (1− e2πis)

∫ ∞
0

ts dt

t2 + 1

1
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The standard way to make the Residue Theorem useful is to modify Hε by not going all the way to +∞
outbound, but stopping at +R for large positive R, traversing clockwise a large circle of radius R back to
the positive real axis, and then inbound to ε. We anticipate that the integrals from R to and from +∞ go
to 0 as R→ +∞, as does the integral over the large circle.

A touch of care is necessary to correctly estimate zs/(z2 + 1) on |z| = R, with our choice that

(Reiθ)s = es logR · eisθ (with 0 ≤ θ < 2π, R > 0, logR ∈ R)

In particular, the reliable conventional fact that |Rit| = 1 for positive real R and real t, is inadequate for
a treatment of exponentials of complex numbers. For our specification of what zs means in the present
context, with z = Reiθ, R > 0, 0 ≤ θ < 2π, and s = u+ iv,

|zs| = |(R · eiθ)s| = |Rs| · |eiθs| = RRe(s) · |eiθ(u+iv)|

Since 0 ≤ θ < 2π, |e−θv| ≤ e2π|v|. Since s = u + iv is fixed in this discussion, we have a uniform bound
C = e2π|v|. Thus, on the circle |z| = R,

|zs| = |(R · eiθ)s| ≤ RRe(s) · e2π|Im(s)|

Specifically, for fixed s with −1 < Re(s) < 1, this is bounded by C ·R1. Thus,

∣∣integral over big circle
∣∣ ≤ length ·max value ≤ 2πR · C ·R

Re(s)

R2 − 1

For each R, ε, this gives a path integral (counter-clockwise) over a closed path. By residues, this picks up
2πi times the sum of the residues inside the path. Thus, we discover that the integrals do not depend on
the parameters 0 < ε < 1 < R. Keeping track of the relevant versions of ts,

(1− e2πis)
∫ ∞
0

ts dt

t2 + 1
= 2πi ·

(
(residue at t = i) + (residue at t = −i)

)

= 2πi ·
(

+
e

1
2πis

−i− i
+
e

3
2πis

i+ i

)
= π · (e 1

2πis − e 3
2πis)

That is, ∫ ∞
0

ts dt

t2 + 1
= π · e

1
2πis − e 3

2πis

1− e2πis
= π · e

− 1
2πis − e 1

2πis

e−πis − eπis
=

π

e
1
2πis + e−

1
2πis

=
2π

cos πs2

This is a charming and useful device, but a different secondary trick is applied to ζ(s):

[1.4] Evaluation of ζ(−n) The first part of the Hankel contour discussion gives

Γ(s) · ζ(s) =

∫ ∞
0

ts

et − 1

dt

t
=

1

1− e2πi(s−1)
· lim
ε→0

∫
Hε

ts

et − 1

dt

t
=

1

1− e2πis
· lim
ε→0

∫
Hε

ts

et − 1

dt

t

Rewrite this as

ζ(s) =
1

Γ(s) · (1− e2πis)
· lim
ε→0

∫
Hε

ts

et − 1

dt

t

At s = −n ∈ {0,−1,−2,−3,−4, . . .} two fortunate things happen. First, the pole of Γ(s) and the zero
of 1 − e2πis cancel, giving a finite, computable value. Second, the function t−n−1 is single-valued, so the
inbound and outbound integrals of the Hankel contour simply cancel each other, and the integral over the

small circle at 0 becomes 2πi times the residue of t−n−1

et−1 at 0.
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The periodicity of 1 − e2πis assures that the leading (linear) term in the power series at any integer is the
same as that at 0, namely,

1− e2πis = 1−
(

1 +
2πis

1!
+

(2πis)2

2!
+ . . .

)
= 2πis+ higher

Grant for the moment that the residue of Γ(s) at −n is (−1)n/n!. Then

ζ(−n) =
1

(−1)n
n! · 2πi

· 2πi · Rest=0
t−n−1

et − 1
= (−1)n · n! · Rest=0

t−n−1

et − 1

The Laurent coefficients of t−n−1

et−1 are more-or-less Bernoulli numbers. These are not completely elementary
objects, but are certainly rational. Thus, ζ(−n) ∈ Q.

[1.5] Vanishing ζ(−2)=ζ(−4)= . . . =0 A slightly finer analysis of the generating function 1
et−1 yields

the vanishing of ζ(s) at negative even integers, as follows.

First, 1
et−1 is very close to being odd as a function of t:

1

et − 1
+

1

e−t − 1
=

1

et − 1
+

et

1− et
=

1

et − 1
− et

et − 1
=

1− et

et − 1
= −1

Thus, ( 1

et − 1
+ 1

2

)
+
( 1

e−t − 1
+ 1

2

)
= 0

and 1
et−1 + 1

2 is odd, so all its non-vanishing Laurent coefficients are odd-degree. Thus, for even −2n < 0,

ζ(−2n) = (−1)2n(2n)! Rest=0
t−2n−1

et − 1
= (2n)! (2nth Laurent coefficient of

1

et − 1
) = 0

[1.6] Residues of Γ(s) Finally, we determine the residues of Γ(s). Certainly

Γ(1) =

∫ ∞
0

t1 e−t
dt

t
=

∫ ∞
0

e−t dt = 1

From the functional equation sΓ(s) = Γ(s+ 1), near s = 0

Γ(s) =
Γ(s+ 1)

s
=

1 + higher

s
=

1

s
+ (holomorphic at s = 0)

Thus, the residue at 0 is 1. Iterating the functional equation,

Γ(s) =
Γ(s+ 1)

s
=

Γ(s+ 2)

(s+ 1)s
=

Γ(s+ 3)

(s+ 2)(s+ 1)s
= . . . =

Γ(s+ n+ 1)

(s+ n)(s+ n− 1) . . . (s+ 2)(s+ 1)s

Thus, the leading Laurent term at s = −n is

1

s+ n
· Γ(s+ n+ 1)

(s+ n− 1) . . . (s+ 2)(s+ 1)s

∣∣∣
s=−n

=
1

s+ n
· Γ(−n+ n+ 1)

(−n+ n− 1) . . . (−n+ 2)(−n+ 1)(−n)

=
1

s+ n
· 1

(−1)(−2)(−3) . . . (−n+ 2)(−n+ 1)(−n)
=

1

s+ n
· (−1)n

n!

That is, the residue of Γ(s) at −n is (−1)n/n! as claimed.
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