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The contour-integration trick illustrated here appeared in one of Riemann’s proofs of analytic continuation
of {(s). Tt almost immediately proves that values of ((s) at non-positive integers are rational, and shows the
connection to the Laurent coefficients of 1/(e* — 1) at t = 0.

[1.1] An integral representation of I'(s) - ((s) Although the integral representation of ((s) using a
theta function is perhaps better in the long run, there is a more elementary one. As always,

qg::§:£; (in Re(s) > 1)

n=1

[1.2] Claim: For Re(s) > 1,
t° dt

Mo = [ ot

Proof: Expand a geometric series, exchange sum and integral, and change variables:
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as claimed. ///

[1.3] Keyhole/HankeI contour The keyhole or Hankel contour is a path from 4oc inbound along the real
line to € > 0, counterclockwise around a circle of radius ¢ at 0, back to € on the real line, and outbound back
to 400 along the real line.

The usual elementary application is to evaluation of integrals similar to OOO fz _fﬁ, with 0 < Re(s) < 1. In

such an example, analytically continuing counterclockwise around 0 has no impact on the denominator, but,
significantly, the numerator changes by a factor e2™*, since

t* = (Jt] - e?ys = [t]® - e'0s (and 0 goes from 0 to 27)

We want the out-bound value of ¢° to be real-valued for real s, so the inbound version of ¢° must be actually
be t5 - 62771‘5.

The absolute value of the integrand goes to 0 as |t| — 0, so the integral over the small circle goes to 0 as
€ — 0, as do the integrals to and from 0, e along the real line.

Thus, letting H. be the Hankel contour with circle of radius € > 0,

, s dt , S (t-e2™)sdt , , oo s qt

lim — 7 — lim ( ————— + (integral over little circle) + 7)
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The standard way to make the Residue Theorem useful is to modify H. by not going all the way to +oo
outbound, but stopping at +R for large positive R, traversing clockwise a large circle of radius R back to
the positive real axis, and then inbound to €. We anticipate that the integrals from R to and from +oco go
to 0 as R — +o00, as does the integral over the large circle.

A touch of care is necessary to correctly estimate 2°/(2% + 1) on |z| = R, with our choice that

(Rei?)s = esloeft. gish (with 0 <0 <27, R >0, logR € R)
In particular, the reliable conventional fact that |R%| = 1 for positive real R and real ¢, is inadequate for
a treatment of exponentials of complex numbers. For our specification of what z° means in the present
context, with z = Re?, R >0, 0 < # < 2w, and s = u + iv,

|ZS| — |(R-6i0)s| _ |RS|~|6i95‘ — RRe(s)_|ei9(u+iv)|

Since 0 < 0 < 2, |e=?| < €IV, Since s = u + iv is fixed in this discussion, we have a uniform bound
C = ¢*>7Il. Thus, on the circle |z| = R,

|ZS‘ _ ‘(R~6i0)s| < RRe(s) .627r\1m(5)\
Specifically, for fixed s with —1 < Re(s) < 1, this is bounded by C - R!. Thus,

C - RRe(s)
|integral over big circle| < length - max value < 27R - o1
For each R, e, this gives a path integral (counter-clockwise) over a closed path. By residues, this picks up
27i times the sum of the residues inside the path. Thus, we discover that the integrals do not depend on
the parameters 0 < e < 1 < R. Keeping track of the relevant versions of ¢*,

omisy [ 10 dt : . . . :
(1 —e"™%) ot 27i - ((remdue at t =1i) + (residue at t = —z))
0

1 . 3.
eETf’LS SETF’LS 1 . 3 .
= 2772 (+ - - - ) = 7(.(657”8 7657”8)
—1—1 141
That is,
o0 4S8 1ris 3ris —iris 1ris
ts dt ez™s — e2 e 2™ —e2 T 2
=T — = T7- - - = —— — = -
0 t?2+1 1 — e2mis e~ Tis _ gmis e3™is | g3 is cos 3

This is a charming and useful device, but a different secondary trick is applied to {(s):

[1.4] Evaluation of ((—n) The first part of the Hankel contour discussion gives

<t dt 1 , t* dt 1 , t* dt
T(s)-¢(s) _/0 et—1 ¢t 1—e2ﬂi<81>'§%AEet1t B 162m'§1§%/ngt1t

Rewrite this as

1 t* dt
C(S) F(S) . (1 _ 6271'25) El_l;% /I{E et —1 ¢

At s = —n € {0,-1,—-2,-3,—4,...} two fortunate things happen. First, the pole of I'(s) and the zero
of 1 — 2™ cancel, giving a finite, computable value. Second, the function t~"! is single-valued, so the
inbound and outbound integrals of the Hankel contour simply cancel each other, and the integral over the
small circle at 0 becomes 27i times the residue of % at 0.
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The periodicity of 1 — e*™ assures that the leading (linear) term in the power series at any integer is the

same as that at 0, namely,

2mis  (2mis)?
1! 2!

Grant for the moment that the residue of I'(s) at —n is (—1)™/n!. Then

1 t—n—l t—n—l

—n) = O - = (=1)".pn!-
¢(—n) E 2mi - Resi— E— (=1)" - n!- Resi—o 1
n!

1_627ris:1_<1+ _|_) = 2mis + higher

The Laurent coeflicients of t;n:; are more-or-less Bernoulli numbers. These are not completely elementary

objects, but are certainly rational. Thus, ((—n) € Q.

[1.5] Vanishing ((—2)=((—4)=... =0 A slightly finer analysis of the generating function —* yields
the vanishing of ((s) at negative even integers, as follows.

First, et—l_l is very close to being odd as a function of ¢:

1+ 1 B 1+et7 G 7176t771
et—1 et—1 e—1 1—e et—1 e -1 et—1
Thus,
1 1 1 1
(et—1+§)+(e—t—1+§) =0
and etl—l + % is odd, so all its non-vanishing Laurent coefficients are odd-degree. Thus, for even —2n < 0,
t72’n71
¢(—2n) = (—=1)*"(2n)! Resi—o 1~ (2n)! (2n'" Laurent coefficient of = 1) =0
[1.6] Residues of I'(s) Finally, we determine the residues of I'(s). Certainly
ra) = / thet — = / e tdt =1
0 t 0
From the functional equation sI'(s) = T'(s+ 1), near s =0
T 1 1 + high 1
I'(s) = (S: ) -t Slg < = 5 + (holomorphic at s = 0)
Thus, the residue at 0 is 1. Iterating the functional equation,
I(s+1) I'(s+2) I'(s+3) I(s+n+1)
[(s) = = = = ... =
s (s+1)s (s+2)(s+1)s (s+n)(s+n—1)...(s+2)(s+1)s
Thus, the leading Laurent term at s = —n is
1 I'(s+n+1) 1 I'(—n+n+1)
s+n  (s+n—-1)...(s+2)(s+Dsls=—n  s+n (—n+n—-1)...(—n+2)(-n+1)(-n)
1 1 1 (=n

s+n  (—1)(=2)(=3)...(—n+2)(—n+1)(-n)  s+n  nl
That is, the residue of I'(s) at —n is (—1)"/n! as claimed.
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