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1. Partial fraction expansion of rational functions
2. Mittag-Loeffler: meromorphic functions with prescribed polar parts

1. Partial fraction expansion of rational functions

We recall the mechanisms involved in partial fraction expansion of rational functions.

When a rational function is (re-) written as the sum of a polynomial and non-polynomial terms of the simple
form c/(z − zo)n, differentiation and integration are much easier.

Even in this case, concepts from complex analysis supplement the elementary algebra. For example, with
distinct a, b, knowing that there exist A,B such that

1

(z − a)(z − b)
=

A

z − a
+

B

z − b

we realize that the residues of the left-hand side at the two poles are exactly the two constants: at z = a,
the residue is 1/(a− b), and at z = b the residue is 1/(b− a):

1

(z − a)(z − b)
=

1/(a− b)
z − a

+
1/(b− a)

z − b

The same device works with larger products of distinct linear factors. With repeated factors, the advantage
of this viewpoint is somewhat reduced, but the viewpoint is still helpful.

Indeed, although the notion of residue most often appears in the context of elementary complex analysis, it
can also be given a comparable sense for algebraic curves and rational functions on them.

From an elementary algebraic viewpoint: for Q,R relatively prime polynomials in the Euclidean ring [1]

C[X], there are polynomials A,B such that A ·Q+B ·R = 1. Thus, for example, with another polynomial
R,

P (z)

Q(z) ·R(z)
=

P (z) ·
(
A(z) ·Q(z) +B(z) ·R(z)

)
Q(z) ·R(z)

=
P (z) ·A(z)

Q(z)
+
P (z) ·B(z)

R(z)

Since C is algebraically closed, polynomials can be factored, up to constants, into products of powers (z−zo)n

of distinct linear factors z − zo. Thus,

(rational function) = (sum of terms of the form)
P (z)

(z − zo)n
(polynomial P )

By polynomial division, the polynomial P can be expressed as

P (X) = c0 + c1(X − zo) + c2(X − zo)2 + . . .+ cN−1(X − zo)N−1 + cN (X − zo)N

[1] A norm on a commutative ring R with identity 1 is a non-negative-real-valued function r → |r| with |ab| = |a| · |b|,
|a + b| ≤ |a| + |b|, |1| = 1, and |0| = 0. Such a ring is Euclidean when, given x ∈ R and 0 6= d ∈ R, there is q ∈ R

such that |x − d · q| < |d|. A typical example is R = Z with the usual absolute value. This property assures that

the Euclidean algorithm succeeds, which implies that the ring is a principal ideal domain, and a unique factorization

domain.
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Then

P (z)

(z − zo)n
=

c0
(z − zo)n

+
c1

(z − zo)n−1
+ . . .+

cN−n+1

z − zo
+
(
cN−n + cN−n−1(z − zo) + . . .+ cN (z − zo)N−n

)
Thus, with distinct zj and positive integers ej ,

polynomial

(z − z1)e1 · (z − zm)em
= polynomial +

∑
1≤i≤m

∑
1≤j≤ei

Cij

(z − zi)j

for constants Cij and some leftover polynomial.

2. Mittag-Loeffler: meromorphic functions with prescribed polar parts

Perhaps surprisingly, there is a meromorphic function on C with prescribed finite Laurent expansions at any
discrete set of points in C:

[2.1] Theorem: (Mittag-Loeffler) Given a discrete, closed set of points {z1, z2, . . .} ⊂ C, and polynomials
Pj(X) ∈ C[X] for j = 1, 2, . . . such that Pj(0) = 0, there is a function f meromorphic on C with poles at
the zj , such that

f(z) = Pj

( 1

z − zj
)

+ (power series in z − zj) (Laurent expansion near zj)

In particular, there are polynomials Qj such that the expression

f(z) =
∑
j

(
Pj

( 1

z − zj
)

+Q(z − zj)
)

converges absolutely and uniformly on compacts.

[2.2] Remark: Often the particulars of specific examples allow a sharper and explicit form of the conclusion.

Proof: The natural first approximation to a meromorphic function on C with the prescribed polar parts
would be ∑

j

Pj

( 1

z − zj
)

(natural guess to make polar parts Pj(1/(z − zj)))

Although the points zj are presumed to have no limit point in C, this natural sum may fail to converge. For
example, ∑

n∈Z

n

z − n
and

∑
m,n∈Z

1

z − (m+ in)

are both divergent. As suggested in the statement of the theorem, it is possible to adjust by polynomials to
compensate, as follows.

For simplicity, suppose that 0 is not in the discrete, closed set of required poles. Each Pj(1/(z − zj)) is
holomorphic near 0, so has a convergent power series expansion

∑
n≥0 cjnz

n at 0. Indeed, this power series
has radius of convergence |zj |, so |cjn| ≤ Cj · |1/zj |n for some constant, by the root test. In particular, the
remainder after the N th term is∣∣∣Pj

( 1

z − zj
)
−

∑
0≤n≤N

cjnz
n
∣∣∣ =

∣∣∣ ∑
n>N

cjnz
n
∣∣∣ ≤ Cj

∑
n>N

∣∣∣ z
zj

∣∣∣n ≤ Cj
|z/zj |N+1

1− |z/zj |
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Taking |z| less than half the distance to the zj nearest 0, this is bounded by

Cj

∑
n>N

∣∣∣zj/2
zj

∣∣∣n = Cj ·
2−(N+1)

1− 1
2

= Cj · 2−N

By taking N = Nj large enough, the sum over j of all these remainders is uniformly absolutely convergent
in the disk where |z| is less than half the smallest |zj |, so gives a holomorphic function on that disk. Also,
with µ = infj |z|j ,∣∣∣∑

j

Pj

( 1

z − zj
)
−

∑
0≤n≤Nj

cjnz
n
∣∣∣ ≤ ∑

j

Cj

∣∣∣ 1

zj

∣∣∣Nj

· |z|Nj (for all |z| ≤ 1
2µ)

Without loss of generality, N1 < N2 < N3 < . . .. By the ratio test, the latter sum converges for all z when

lim
j

(
Cj ·

∣∣∣ 1

zj

∣∣∣Nj
)1/Nj

= lim
j
C

1/Nj

j · 1

|zj |
= 0

Since |zj | → +∞, there exists a choice of {Nj} achieving this effect. Thus, with

Qj(z) =
∑
n≤Nj

cjnz
n

the series ∑
j

∣∣∣Pj

( 1

z − zj
)

+Q(z − zj)
∣∣∣

is dominated by a power series convergent on C. However, the series involving the Pj is not a power series,
so something further is necessary.

Given r > 0, the set J = {j : |zj | ≤ r} is finite, by discreteness of {zj}. Then the ratio-test bound implies
that the power series for ∑

j 6∈J

(
Pj

( 1

z − zj
)

+Q(z − zj)
)

is absolutely and uniformly convergent in |z| ≤ r. Adding the finitely-many terms for j ∈ J creates no
convergence problems, although introducing finitely-many poles in that disk. This applies to every r <∞, so
the indicated series converges (uniformly on compacts not meeting the set of poles) and gives a meromorphic
function on C. ///

[2.3] Remark: Again, simplifications convenient for treatment of the general case, such as invocation of the
root test by assuming N1 < N2 < . . ., can be avoided in many specific examples.

[2.4] Remark: We must explicitly require closedness of the discrete set, since there are discrete sets that
are not closed, for example, {1/n}.
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