Exam by email Fri, Feb 04

(or at other times by arrangement — just let me know)

Sorry again about Zoom glitch today — "It's not my fault!"

(At least) 2 things that deserve a bit of follow-up attention:

- Convergence of Fourier series
- Chain rule — with ∂F

I don't want to write much formulaic stuff about Fourier series here, but, rather, re-emphasize that the general idea pre-dates Fourier by 100+ years, but it was Fourier who optimistically/progressively promoted the universality of such expressibility.

Also, his first paper was blocked due to the "Scandalousness" ... so Dirichlet inaccurately gets credit for some basic theorems, I for the "Dirichlet" Fourier kernel.
About a chain rule for \(\frac{\partial}{\partial z} = \frac{2}{2z} \) and \(\frac{\partial}{\partial \bar{z}} = \frac{2}{2\bar{z}} \).

Yes, on one hand, we can just \[\text{\textit{unwind}}\] the literal, real variables versus

\[\frac{2}{\partial z} = \left(\frac{2}{2x} - i \frac{2}{2y} \right), \text{ etc.} \]

But, there is some interest in seeing how to \[\text{\textit{prove}}\] that harmonic stuff is harmonic.

Correctly spell the \(\partial, \bar{\partial} \) "machine":

(\text{This is also typeset in "discussion 05"})

Tenderly

To begin, of course "the chain rule" is useful thought of as about \textit{causality/change}, so, beyond notational persiflage (!).

\(\Delta \) change in \(f(g(x), h(x)) \) due to change in \(x \), is

\(\Delta \) change in \(f \) due to first argument \(x \) change in \(g \) due to change in \(x \)

+ \(\Delta \) change in \(f \) due to second \(\text{\textit{second}} \) \(g \) \(x \) due to change in \(x \).
The correct manifestation of this of the mysteries z, \overline{z} & $\overline{z}, \overline{\overline{z}}$ is not immediately clear.

As in the typeset discussion OS, using h_1 & h_2 for partial derivs w.r.t. \overline{z} & the 2nd arguments is better than joining the vastly arguments supposedly irrevocable names, such as z, \overline{z}. So, for example, \[\frac{\partial}{\partial \overline{z}} (f \circ g) = (\partial f / \partial g) \cdot dg + (\partial f / \partial \overline{g}) \cdot d\overline{g} \]

\[\text{(-valued on } \mathbb{C}) \]

because the two arguments to f are \overline{g} & \overline{f} of course.

Lesson: the chain rule is well worth thinking about. \(\square\)