Holomorphy of compact integrals of holomorphic

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Let f(t,z) be a function on $[a,b] \times U$ for a finite interval $[a,b] \subset \mathbb{R}$ and non-empty open $U \subset \mathbb{C}$.

[0.1] Claim: Suppose that f(t,z) is jointly continuous, as a function of two variables, and that for each fixed t is holomorphic in z. Then $F(z) = \int_a^b f(t,z) \, dt$ is holomorphic in z. Further, if $\frac{\partial}{\partial z} f(t,z)$ is also jointly continuous, then the natural differentiation property holds:

$$F'(z) = \frac{d}{dz} \int_a^b f(t,z) dt = \int_a^b \frac{\partial}{\partial z} f(t,z) dt$$

Proof: Apply Cauchy's formula to f(t,z) for each fixed t:

$$F(z) = \int_a^b f(t,z) dt = \int_a^b \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(t,w)}{w-z} dw \right) dt$$

where γ traces a circle (contractible in U) with z in its interior. Let $\gamma:[c,d]\to\mathbb{C}$ be any particular parametrization, so

$$\int_a^b \left(\frac{1}{2\pi i} \int_\gamma \frac{f(t,w)}{w-z} \ dw\right) \ dt \ = \ \frac{1}{2\pi i} \int_{[a,b]\times[c,d]} f(t,\gamma(\theta)) \cdot \gamma'(\theta) \cdot \frac{1}{\gamma(\theta)-z} \ dt \ d\theta$$

Direct estimates will show that this double integral is complex differentiable in z. Certainly

$$\frac{1}{w - (z + h)} - \frac{1}{w - z} = \frac{h}{(w - (z + h))(w - z)}$$

Thus,

$$\frac{F(z+h)-F(z)}{h} \; = \; \int_{[a,b]\times[c,d]} f(t,\gamma(\theta)) \cdot \gamma'(\theta) \cdot \frac{1}{\gamma(\theta)-z} \cdot \frac{1}{\gamma(\theta)-(z+h)} \; dt \, d\theta$$

For each fixed z inside γ , we show that this double integral has a limit as $h \to 0$. First, for fixed z inside γ , the continuous function $(t,\theta) \to f(t,\gamma(\theta)\cdot\gamma'(\theta)/(\gamma(\theta)-z))$ is necessarily uniformly continuous on $[a,b]\times[c,d]$, because $[a,b]\times[c,d]$ is compact. Thus, it suffices to show that, for fixed z inside γ

$$\frac{1}{\gamma(\theta) - (z+h)} \longrightarrow \frac{1}{\gamma(\theta) - z}$$

uniformly in θ . This is true for general reasons, but, also, again, explicitly,

$$\frac{1}{w - (z + h)} - \frac{1}{w - z} \; = \; \frac{h}{(w - (z + h))(w - z)}$$

Certainly $|w-z|=|\gamma(\theta)-z|$ has a positive inf μ . Further, we can take h small enough so that z+h is closer to z than to any $w=\gamma(\theta)$. Thus, $|w-(z+h)|\geq \frac{1}{2}\cdot |w-z|$. Thus, we have a uniform estimate

$$\left|\frac{1}{w-(z+h)} - \frac{1}{w-z}\right| \leq \frac{|h|}{\frac{1}{2} \cdot \mu \cdot \mu}$$

Thus, the integrand goes to

$$f(t, \gamma(\theta)) \cdot \gamma'(\theta) \cdot \frac{1}{(\gamma(\theta) - z)^2}$$

Paul Garrett: Holomorphy of compact integrals of holomorphic (November 5, 2021)

uniformly in t, θ .

The Riemann integral has the property that the integral on a compact set of a uniform limit of continuous functions is the integral of the limit. Thus, the limit exists, and F(z) is complex-differentiable.

Further, from

$$F'(z) = \frac{1}{2\pi} \int_{[a,b] \times [c,d]} f(t,\gamma(\theta)) \cdot \gamma'(\theta) \cdot \frac{1}{(\gamma(\theta) - z)^2} dt d\theta$$

integrating by parts in θ (since γ is a closed curve),

$$F'(z) = \frac{1}{2\pi i} \int_{[a,b] \times [c,d]} \gamma'(\theta) \cdot \frac{\partial}{\partial w} f(t,\gamma(\theta)) \cdot \frac{1}{\gamma(\theta) - z} dt d\theta$$

$$=\;\frac{1}{2\pi i}\int_{[a,b]}\int_{\gamma}\frac{\partial}{\partial w}f(t,w)\,\frac{1}{w-z}\;dw\,dt\;=\;\int_{[a,b]}\frac{\partial}{\partial z}f(t,z)\,dt$$

///

by Cauchy's formula. This is the desired differentiation-under-the-integral formula.