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Hilbert spaces are possibly-infinite-dimensional analogues of the finite-dimensional Euclidean spaces familiar
to us. In particular, Hilbert spaces have inner products, so notions of perpendicularity (or orthogonality), and
orthogonal projection are available. Reasonably enough, in the infinite-dimensional case we must be careful
not to extrapolate too far based only on the finite-dimensional case.

Perhaps strangely, few naturally-occurring spaces of functions are Hilbert spaces. Given the intuitive
geometry of Hilbert spaces, this fact is a little disappointing, as it suggests that our physical intuition
is a little distant from the behavior of spaces of functions, for example. [1]
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1. Pre-Hilbert spaces: definition

Let V be a complex vector space. A complex-valued function

〈, 〉 : V × V → C

of two variables on V is a (hermitian) inner product if

〈x, y〉 = 〈y, x〉 (the hermitian-symmetric property)
〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉 (additivity in first argument)
〈x, y + y′〉 = 〈x, y〉+ 〈x, y′〉 (additivity in second argument)
〈x, x〉 ≥ 0 (and equality only for x = 0: positivity)
〈αx, y〉 = α〈x, y〉 (linearity in first argument)
〈x, αy〉 = ᾱ〈x, y〉 (conjugate-linearity in second argument)

Then V equipped with such a 〈, 〉 is a pre-Hilbert space. Among other easy consequences of these
requirements, for all x, y ∈ V

〈x, 0〉 = 〈0, y〉 = 0

where inside the angle-brackets the 0 is the zero-vector, and outside it is the zero-scalar.

[1] However, a little later we will see that suitable families of Hilbert spaces may capture what we want. Such ideas

originate with Sobolev in the 1930’s. Sobolev’s ideas were not widely known in the West when Schwartz formulated

his notions of distributions, so were not directly incorporated. Certainly Sobolev’s ideas fit into Schwartz’ general

scheme, but they do also offer some useful specifics, as we will see.
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The associated norm | | on V is defined by

|x| = 〈x, x〉1/2

with the non-negative square-root. Even though we use the same notation for the norm on V as for the
usual complex value ||, context should always make clear which is meant.

Sometimes such spaces V with 〈, 〉 are called inner product spaces or hermitian inner product spaces.

For two vectors v, w in a pre-Hilbert space, if 〈v, w〉 = 0 then v, w are orthogonal or perpendicular,
sometimes written v ⊥ w. A vector v is a unit vector if |v| = 1.

There are several essential algebraic identities, variously and ambiguously called polarization identities.
First, there is

|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2

which is obtained simply by expanding the left-hand side and cancelling where opposite signs appear. In a
similar vein,

|x+ y|2 − |x− y|2 = 2〈x, y〉+ 2〈y, x〉 = 4<〈x, y〉

Therefore,
(|x+ y|2 − |x− y|2) + i(|x+ iy|2 − |x− iy|2) = 4〈x, y〉

These and closely-related identites are of frequent use.

2. Cauchy-Schwarz-Bunyakowski inequality

This inequality is fundamental. It is necessary to prove that the triangle inequality holds for the norm, from
which we get the associated metric, as indicated below.

The Cauchy-Schwarz-Bunyakowsky inequality in a pre-Hilbert space asserts that

|〈x, y〉| ≤ |x| · |y|

with strict inequality unless x, y are collinear, i.e., unless one of x, y is a multiple of the other.

Proof: Suppose that x is not a scalar multiple of y, and that neither x nor y is 0. Then x− αy is not 0 for
any complex α. Consider

0 < |x− αy|2

We know that the inequality is indeed strict for all α since x is not a multiple of y. Expanding this,

0 < |x|2 − α〈x, y〉 − ᾱ〈y, x〉+ αᾱ|y|2

Let
α = µt

with real t and with |µ| = 1 so that
µ〈x, y〉 = |〈x, y〉|

Then
0 < |x|2 − 2t|〈x, y〉|+ t2|y|2

The minimum of the right-hand side, viewed as a function of the real variable t, occurs when the derivative
vanishes, i.e., when

0 = −2|〈x, y〉|+ 2t|y|2
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Using this minimization as a mnemonic for the value of t to substitute, we indeed substitute

t =
|〈x, y〉|
|y|2

into the inequality to obtain

0 < |x|2 +
(
|〈x, y〉|
|y|2

)2

· |y|2 − 2
|〈x, y〉|
|y|2

· |〈x, y〉|

which simplifies to
|〈x, y〉|2 < |x|2 · |y|2

as desired. ///

3. Example: spaces `2

Before any further abstract discussion of Hilbert spaces, we can note that, up to isomorphism, [2] there
is just one infinite-dimensional Hilbert space occurring in practice, [3] namely the space `2 constructed as
follows. Proof that most Hilbert spaces are isomorphic to this one will be given later.

Let `2 be the collection of sequences a = {ai : 1 ≤ i <∞} of complex numbers meeting the constraint

∞∑
i=1

|ai|2 < +∞

For two such sequences a = {ai} and b = {bi}, the inner product is

〈a, b〉 =
∑
i

aibi

The associated norm is [4]

|a| = 〈a, a〉1/2

We can immediately generalize this construction in one fashion by replacing the countable set {1, 2, 3, . . .}
by an arbitrary set A. [5] Let A be an arbitrary index set, and let `2(A) be the collection of complex-valued
functions f on A such that ∑

α

|f(α)|2 < +∞

[2] And, lest anyone be fooled, often the description of such isomorphisms is where any subtlety lies.

[3] Most infinite-dimensional Hilbert spaces occurring in practice have a countable dense subset, and this itself is

because the Hilbert spaces are completions of spaces of continuous functions on topological spaces with a countable

basis to the topology. This will be amplified subsequently.

[4] That the triangle inequality holds is not immediate, needing the Cauchy-Schwarz-Bunyakowsky inequality. We

will give the proof shortly.

[5] Replacement of {1, 2, . . .} by an arbitrary set A is mildly pointless except as an exercise in technique, since, as

noted already, in practice we will rarely encounter Hilbert spaces not isomorphic to `2, if not already isomorphic to

the finite-dimensional spaces Cn.
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For two such functions f, ϕ, define an inner product by

〈f, ϕ〉 =
∑
α

f(α)ϕ(α)

For any finite subset Ao of Ao we can apply the Cauchy-Schwarz-Bunyakowsky inequality to obtain

|
∑
α∈Ao

f(α)ϕ(α)| ≤ (
∑
α∈Ao

|f(α)|2)1/2 (
∑
α∈Ao

|ϕ(α)|2)1/2

Thus, the net of all partial sums
∑
α∈Ao

f(α)ϕ(α) has a limit, so is necessarily Cauchy.

In fact, the sum 〈f, ϕ〉 =
∑
α f(α)ϕ(α) is absolutely convergent: for each α let µα be a complex number of

absolute value 1 so that
µαf(α)ϕ(α) = |f(α)ϕ(α)|

and let
F (α) = µαf(α)

Then F is still in `2(A), and
〈F,ϕ〉 =

∑
α

|f(α)ϕ(α)|

We just saw that the partial sums of the latter infinite sum form a Cauchy net, so we have the asserted
absolute convergence.

[3.0.1] Remark: The more general spaces L2(X,µ) for abstract measure spaces X,µ have a similar
treatment, but need somewhat greater preparation in terms of integration theory.

4. Triangle inequality, associated metric, continuity issues

As corollary of the Cauchy-Schwarz-Bunyakowsky inequality, we have a norm and associated metric topology
on a pre-Hilbert space:

Again, the (associated) norm on a pre-Hilbert space V is

|x| = 〈x, x〉1/2

and the associated metric is
d(x, y) = |x− y|

The reflexivity, symmetry, and positivity of this alleged distance function are clear from the definitional
properties of 〈, 〉, but the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z)

needs proof. That is, we want
|x− z| ≤ |x− y|+ |y − z|

Assuming for the moment that this triangle inequality holds, we do have a metric on the pre-Hilbert space
V , and we can show that the map

〈, 〉 : V × V → C

is continuous as a function of two variables. Indeed, suppose that |x − x′| < ε and |y − y′| < ε for
x, x′, y, y′ ∈ V . Then

〈x, y〉 − 〈x′, y′〉 = 〈x− x′, y〉+ 〈x′, y〉 − 〈x′, y′〉 = 〈x− x′, y〉+ 〈x′, y − y′〉
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Using the triangle inequality for the ordinary absolute value, and then the Cauchy-Schwarz-Bunyakowsky
inequality, we obtain

|〈x, y〉 − 〈x′, y′〉| ≤ |〈x− x′, y〉|+ |〈x′, y − y′〉| ≤ |x− x′||y|+ |x′||y − y′|

< ε(|y|+ |x′|)

This proves the continuity of the inner product.

Further, scalar multiplication and vector addition are readily seen to be continuous. In particular, it is easy
to check that for any fixed y ∈ V and for any fixed λ ∈ C× both maps

x→ x+ y

x→ λx

are homeomorphisms of V to itself.

Now we prove the desired inequality
|x− z| ≤ |x− y|+ |y − z|

which is equivalent to the triangle inequality for the alleged metric d(x, y) = |x− y|. The appearance of this
can be simplified a bit. Replacing x, z by x+ y, z + y in this, we see that we want

|x− z| ≤ |x|+ |z|

We have
|x− z|2 = |x|2 − 〈x, z〉 − 〈z, x〉+ |z|2 ≤ |x|2 + 2|x||z|+ |z|2

by the Cauchy-Schwarz-Bunyakowsky inequality. The right-hand side is the square of |x| + |z|, as desired.
Done.

5. Hilbert spaces, completions, infinite sums

If a pre-Hilbert space is complete with respect to the metric arising from its inner product (and norm), then
it is called a Hilbert space.

An arbitrary pre-Hilbert space can be completed as metric space. Since metric spaces have countable local
bases for their topology (e.g., open balls of radii 1, 1

2 ,
1
3 ,

1
4 , . . .) all points in the completion are limits of

Cauchy sequences (rather than being limits of more complicated Cauchy nets). The completion inherits an
inner product defined by a limiting process

〈lim
m
xm, lim

n
yn〉 = lim

m,n
〈xm, yn〉

It is not hard to verify that the indicated limit exists (for Cauchy sequences {xm}, {yn}), and gives a
hermitian inner product on the completion. The completion process does nothing to a space which is already
complete.

In a Hilbert space, we can consider infinite sums ∑
α∈A

vα

for sets {vα : α ∈ A} of vectors in V . Not wishing to have a notation that only treats sums indexed by
1, 2, 3, . . ., we must consider the directed system A of all finite subsets of A. Consider the net of finite
partial sums of

∑
vα indexed by A by

s(Ao) =
∑
α∈Ao

vα
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where Ao ∈ A. This is a Cauchy net if, given ε > 0, there is a finite subset Ao of A so that for any two
finite subsets A1, A2 of A both containing Ao we have

|s(A1)− s(A2)| < ε

If the net is Cauchy, then by the completeness there is a unique v ∈ V , the limit of the Cauchy net, so
that for all ε > 0 there is a finite subset Ao of A so that for any finite subset A1 of A containing Ao we have

|s(A1)− v| < ε

6. Minimum principle

This fundamental minimum principle asserts that a non-empty closed convex set in a Hilbert space has a
unique element of least norm. This is essential in the sequel.

Proof: Recall that a set C in a vector space is convex if, for all x, y ∈ C and 0 ≤ t ≤ 1,

tx+ (1− t)y ∈ C

Let x, y be two elements in a closed convex set C inside a Hilbert space V so that both |x| and |y| are within
ε > 0 of the infimum µ of the norms of elements of C. Then

|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2

Since C is convex,
x+ y

2
∈ C

Thus,

|x+ y|2 = 4|x+ y

2
|2 ≥ 4µ2

Thus,
|x− y|2 = 2|x|2 + 2|y|2 − |x+ y|2 ≤ 2(µ+ ε)2 + 2(µ+ ε)2 − 4µ2 = ε · (8µ+ 4ε)

Thus, any sequence (or net) in C whose norms approach the infimum must be a Cauchy sequence (net).
Since C is closed, such a sequence must converge to an element of C. Further, the inequality shows that any
two Cauchy sequences (or nets) converging to points minimizing the norm on C must have the same limit.
Thus, the minimizing point is unique, as claimed.

7. Orthogonal projections to closed subspaces

The next essential ingredient makes use of the minimization principle above:

Let W be a complex vector subspace of a pre-Hilbert space V . If W is closed in the topology on V then,
reasonably enough, we say that W is a closed subspace. For an arbitrary complex vector subspace W of
a pre-Hilbert space V , the topological closure W̄ is readily checked to be a complex vector subspace of V ,
so is a closed subspace. Because it is necessarily complete, a closed subspace of a Hilbert space is a Hilbert
space in its own right.

Let W be a closed subspace of a Hilbert space V . Let v ∈ V . We have seen that the closed convex subset

v +W = {v + w : w ∈W}
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of V has a unique element vo of least norm. The orthogonal projection pv of v to W is

pv = v − vo

We claim that pv is the unique element in W so that

〈v − pv, w〉 = 0

for all w ∈W . And then pv is called the orthogonal projection of v to W .

If there were two vectors v1, v2 ∈W so that

〈v − vi, w〉 = 0

for both i = 1, 2 and for all w ∈W , then, by subtracting, we would have

〈v1 − v2, w〉 = 0

for all w ∈W . In particular, we could take w = v1 − v2, so we see that necessarily v1 − v2 = 0. This proves
uniqueness.

Now let vo be the unique element of v+W of least norm. For any w ∈W , the vector vo+w is still in v+W ,
so

〈vo, vo〉 ≤ 〈vo + w, vo + w〉

from which it follows that
0 ≤ 〈vo, w〉+ 〈w, vo〉+ |w|2

Replacing w by µw with µ a complex number with |µ| = 1 and

〈vo, µw〉 = |〈vo, w〉|

we have
0 ≤ 2|〈vo, w〉|+ |w|2

Replacing w by tw with t > 0, this is
0 ≤ 2t|〈vo, w〉|+ t2|w|2

Dividing by t and letting t→ 0+, this gives
〈vo, w〉 = 0

Then
〈v − pv, w〉 = 〈v − (v − vo), w〉 = 〈vo, w〉 = 0

as required. Done.

8. Orthogonal complements W⊥

Let W be a complex vector subspace of a pre-Hilbert space V . Define the orthogonal complement W⊥

of W by
W⊥ = {v ∈ V : 〈v, w〉 = 0, ∀w ∈W}

It is easy to check that W⊥ is a complex vector subspace of V . Since for each w ∈W the set

w⊥ = {v ∈ V : 〈v, w〉 = 0}
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is the inverse image of the closed set {0} of C under the continuous map

v → 〈v, w〉

it is closed. Thus, the orthogonal complement W⊥ is the intersection of a family of closed sets, so is closed.

One point here is that if the topological closure W̄ of W in a Hilbert space V is properly smaller than V
then W⊥ 6= {0}. Indeed, if W̄ 6= V then we can find y 6∈ W̄ . Let py be the orthogonal projection of y to
W̄ . Then yo = y − py is non-zero and is orthogonal to W , so is orthogonal to W̄ , by continuity of the inner
product. Thus, as claimed, W⊥ 6= {0}.

As a corollary, for any complex vector subspace W of the Hilbert space V , the topological closure of W in V
is the subspace

W̄ = W⊥⊥

One direction of containment, namely that
W̄ ⊂W⊥⊥

is easy: it is immediate that W ⊂W⊥⊥, and then since the latter is closed we get the asserted containment.
If W⊥⊥ were strictly larger than W̄ , then there would be y in it not lying in W̄ . Now W⊥⊥ is a Hilbert space
in its own right, in which W̄ is a closed subspace, so the orthogonal complement of W̄ in W⊥⊥ contains a
non-zero element z, from above. But then z ∈W⊥, and certainly

W⊥ ∩ (W⊥)⊥ = {0}

contradiction. Done.

9. Riesz-Fischer theorem on linear functionals

A (linear) functional λ on a pre-Hilbert space V is a complex-valued function λ on V so that for α ∈ C
and x, y ∈ V

λ(x+ y) = λ(x) + λ(y) (additivity)

λ(αx) = αλ(x) (linearity)

The kernel or nullspace of a linear functional λ is

kerλ = {v ∈ V : λ(v) = 0}

A functional is continuous if it is continuous in the topology on V with the usual topology on C. A
functional is bounded if there is a finite real constant C so that, for all x ∈ V ,

|λ(x)| < C|x|

The collection of all continuous linear functionals on a pre-Hilbert space V is denoted by

V ∗

We claim that continuity of the functional λ is equivalent to boundedness. Indeed, continuity at zero is the
assertion that for all ε > 0 there is an open ball B = {x ∈ V : |x| < δ} (with δ > 0) such that |λ(x)| < ε for
x ∈ B. In particular, take δ > 0 so that for |x| < δ we have

|λ(x)| < 1

8
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Then for arbitrary 0 6= x ∈ V we have

| δ
2|x|
· x| < δ

Therefore,

|λ(
δ

2|x|
· x)| < 1

That is, using the linearity of λ,

|λ(x)| < 2|x|
δ

That is, we see that continuity implies boundedness.

On the other hand, suppose that there is a finite real constant C so that, for all x ∈ V ,

|λ(x)| < C|x|

Then for |x− y| < ε/C we have

|λ(x)− λ(y)| = |λ(x− y)| < C|x− y| < C · ε
C

= ε

showing that boundedness implies continuity. Thus, we have proven that boundedness and continuity are
equivalent.

For a pre-Hilbert space V with completion V̄ , a continuous linear functional λ on V has a unique extension
to a continuous linear functional on V̄ , defined by

λ̄(lim
n
xn) = lim

n
λ(xn)

It is not difficult to check that this formula gives a well-defined function (due to the continuity of the original
λ), and is additive and linear.

Now we prove the Riesz-Fischer theorem: every continuous linear functional λ on a pre-Hilbert space V
is of the form

λ(x) = 〈x, y〉

for a uniquely-determined y in the completion V̄ of V .

To prove this, we may as well suppose at the outset that V is complete, i.e., is a Hilbert space, since
every continuous linear functional extends to the completion anyway. Let λ be a non-zero continuous linear
functional on V . Then the kernel N of λ is a proper closed subspace. From above, there is a non-zero
element z ∈ N⊥. Let

y =
z

λ(z)

so that λ(y) = 1. Then, for any v ∈ V ,

λ(v − λ(v)y) = λ(v)− λ(v) · 1 = 0

so v − λ(v)y ∈ N . Therefore,
0 = 〈v − λ(v)y, y〉

Thus,
〈v, y〉 = λ(v)〈y, y〉

so that
〈v, y

〈y, y〉
〉 = λ(v)
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as desired. Done.

10. Orthonormal sets, separability

A set {eα : α ∈ A} in a pre-Hilbert space V is orthogonal if

〈eα, eβ〉 = 0

for all α 6= β. If, further,
|eα| = 1

for all indices then the set is orthonormal. An orthogonal set of non-zero vectors can easily be turned into
an orthonormal one by replacing each eα by eα/|eα|.

We claim that not only are the elements eα in an orthonormal set linearly independent in the usual purely
algebraic sense, but, further, if we have a convergent infinite sum Σα∈Acαeα with complex cα and if

Σαcαeα = 0

then all coefficients cα are 0. Indeed, for given ε > 0 let Ao be a large-enough finite subset of A so that for
any finite subset A1 ⊃ Ao

|Σα∈A1cαeα| < ε

Then for any particular index β we may as well enlarge A1 to include β, and

|〈Σα∈A1cαeα, eβ〉| ≤ |Σα∈A1cαeα| · |eβ | < ε · |eβ | = ε

by the Cauchy-Schwarz-Bunyakowsky inequality. On the other hand, using the orthonormality,

|〈Σα∈A1cαeα, eβ〉| = |cβ | · |eβ |2 = |cβ |

Together, this gives |cβ | < ε. Since this is true for all ε > 0, it must be that cβ = 0. This holds for all indices
β. Done.

A maximal orthonormal set inside a pre-Hilbert space is called an orthonormal basis. The property of
maximality of an orthonormal set {eα : α ∈ A} is the natural one, that there be no other unit vector e
perpendicular to all the eα. (It is important to note that the phrase ‘orthonormal basis’ has a different sense
in other contexts).

Let {eα : α ∈ A} be an orthonormal set in a Hilbert space V . Let Wo be the complex vector space of all
finite linear combinations of vectors in {eα : α ∈ A}. Then we claim that {eα : α ∈ A} is an orthonormal
basis if and only if Wo is dense in V . Indeed, if the closure W of Wo were a proper subspace of V , then it
would have a non-trivial orthogonal complement, so we could make a further unit vector, so {eα : α ∈ A}
could not have been maximal. On the other hand, if {eα : α ∈ A} is not maximal, let e be a unit vector
orthogonal to all the eα. Then e is orthogonal to all finite linear combinations of the eα, so is orthogonal to
Wo, and thus to W by continuity. That is, Wo cannot be dense. ///

Next, we show that any orthonormal set can be enlarged to be an orthonormal basis. To prove this requires
invocation of an equivalent of the Axiom of Choice. Specifically, we want to order the collection X of
orthonormal sets (containing the given one) by inclusion, and note that any totally ordered collection of
orthonormal sets in X has a supremum, namely the union of all. Thus, we are entitled to conclude that there
are maximal orthonormal sets containing the given one. If such a maximal one were not an orthonormal
basis, then (as observed just above) we could find a further unit vector orthogonal to all vectors in the
orthonormal set, contradicting the maximality within X. ///
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If a Hilbert space has a countable orthonormal basis, then it is called separable. Most Hilbert spaces of
practical interest are separable, but at the same time most elementary results do not make any essential use
of separability so there is no compulsion to worry about this at the moment.

11. Bessel inequality, Parseval isomorphism

Let {eα : α ∈ A} be an orthonormal basis in a Hilbert space V . Granting for the moment that v ∈ V has an
expression

v =
∑
α

cαeα

we can determine the coefficients cα, as follows. By the continuity of the inner product, this equality yields

〈v, eβ〉 = 〈
∑
α

cαeα, eβ〉 =
∑
α

cα〈eα, eβ〉 = cβ

An expression
v =

∑
α

cαeα

is an abstract Fourier expansion
v =

∑
α

〈v, eα〉eα

The coefficients are the (abstract) Fourier coefficients in terms of the orthonormal basis.

[11.0.1] Remark: We have not quite proven that every vector has such an expression. We do so after
proving a necessary preparatory result.

[11.0.2] Proposition: (Bessel’s inequality) Let {eβ : β ∈ B} be an orthonormal set in a Hilbert space
V . Then

|v|2 ≥
∑
β∈B

|〈v, eβ〉|2

Proof: Just using the positivity (and continuity) and orthonormality

0 ≤ |v −
∑
β∈B

〈v, eβ〉 eβ |2 = |v|2 −
∑
β∈B

〈v, eβ〉〈v, eβ〉 −
∑
β∈B

〈v, eβ〉〈v, eβ〉+
∑
β∈B

|〈v, eβ〉|2

= |v|2 −
∑
β∈B

|〈v, eβ〉|2

This gives the desired inequality. ///

[11.0.3] Proposition: Every vector v ∈ V has a unique expression as

v =
∑
α∈A

cαeα

More precisely, for v ∈ V and for each finite subset B of A let

vB = projection of v to
∑
α∈B C · eα = v −

∑
α∈B
〈v, eα〉 eα

Then the net
{vB : B finite, B ⊂ A}

is Cauchy and has limit v.
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Proof: Uniqueness follows from the previous discussion of the density of the subspace Vo of finite linear
combinations of the eα.

Bessel’s inequality
|v|2 ≥

∑
α∈B

|〈v, eα〉|2

implies that the net is Cauchy, since the tails of a convergent sum must go to 0. Let w be the limit of this
net. Given ε > 0, let B be a large enough finite subset of A such that for finite subset C ⊃ B |w − vC | < ε.
Given α ∈ A enlarge B if necessary so that α ∈ B. Then

|〈v − w, eα〉| ≤ |〈v − vB , eα〉|+ |〈w − vB , eα〉| ≤ 0 + |w − vB | < ε

since 〈v − vB , eα〉 = 0 for α ∈ B. Thus, if v 6= w, we can construct a further vector of length 1 orthogonal
to all the eα, namely a unit vector in the direction of v − w. This would contradict the maximality of the
collection of eα. ///

[11.0.4] Remark: If V were only a pre-Hilbert space, that is, were not complete, then a maximal
collection of mutually orthogonal vectors of length 1 may not have the property of the theorem. That is, the
collection of (finite) linear combinations may fail to be dense. This is visible in the proof above, wherein we
needed to be able to take the limit that yielded the auxiliary vector w. For example, inside the standard `2

let e1, e2, . . . be the usual
e1 = (1, 0, 0, . . .), e1 = (0, 1, 0, . . .), (etc.)

and let
v1 = (1,

1
2
,

1
3
,

1
4
,

1
5
, . . .)

Let V be pre-Hilbert space which is the (algebraic) span of

v1, e2, e3, . . .

Certainly
B = {e2, e3, . . .}

is an orthonormal set. In fact, this collection is maximal, but that v1 is not in the closure of the span of B.

For v ∈ V , write
v̂ = 〈v, eα〉

[11.0.5] Corollary: (Parseval isomorphism) The map

v → v̂

is an isomorphism of Hilbert spaces
V → `2(A)

That is, the map is an isomorphism of complex vector spaces, is a homeomorphism of topological spaces,
and

〈v, w〉 = 〈v̂, ŵ〉 |v|2 = |v̂|2`2(A)

(where the inner product on the left is that in V and the inner product on the right is that in `2(A).)

Proof: Expand any vector v in terms of the given orthonormal basis as

v =
∑
α

v̂ eα

12
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The assertion that
〈v, w〉 = 〈v̂, ŵ〉

is a consequence of the expansion in terms of the orthonormal basis, together with continuity. That v̂ lies in
`2(A), and in fact has norm equal to that of v, is the assertion of Parseval.

The only thing of any note is the point that any {cα} ∈ `2(A) can actually occur as the (abstract) Fourier
coefficients of some vector in V . That is, for f ∈ `2(A), we want to show that the net of finite sums∑

α∈Ao

f(α)eα

(for Ao a finite subset of A) is Cauchy. Since f ∈ `2(A), for given ε > 0 there is large-enough finite Ao so
that ( ∑

α∈A−Ao

|f(α)|2
)1/2

= |
∑

α∈A−Ao

f(α)eα| < ε

(using the orthonormality). Then for A1, A2 both containing Ao,

|
∑
α∈A1

f(α)eα −
∑
α∈A2

f(α)eα|2 =
∑

α∈(A1∪A2)−Ao

|f(α)eα|2 ≤
∑

α∈A−Ao

|f(α)|2 < ε2

From this the Cauchy property follows. Done.

12. Riemann-Lebesgue lemma

The result of this section is an essentially trivial consequence of previous observations, and is certainly much
simpler to prove than the genuine Riemann-Lebesgue lemma for Fourier transforms.

Let {eα : α ∈ A} be an orthonormal basis for a Hilbert space V . For v ∈ V , write

v̂ = 〈v, eα〉

Then the version of a Riemann-Lebesgue lemma relevant here is that

lim
α
|v̂(α)| = 0

More explicitly, this means that for given ε > 0 there is a finite subset Ao of A so that for α 6∈ Ao we have

|v̂(α)| < ε

This follows from the fact that the infinite sum ∑
α

|v̂(α)|2

is convergent.

13. The Gram-Schmidt process

Let S = {vn : n = 1, 2, 3, . . .} be a well-ordered set of vectors in a pre-Hilbert space V . For simplicity, we
are also assuming that S is countable. Let Vo be the collection of all finite linear combinations of S, and

13
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suppose that S is dense in V . Then we can obtain an orthonormal basis from S by the following procedure,
called the Gram-Schmidt process:

Let vn1 be the first of the vi which is non-zero, and put

e1 =
vn1

|vn1 |

Let vn2 be the first of the vi which is not a multiple of e1. Put

f2 = vn2 − 〈vn2 , e1〉e1

and
e2 =

f2
|f2|

Inductively, suppose we have chosen e1, . . . , ek which form an orthonormal set. Let vnk+1 be the first of the
vi not expressible as a linear combination of e1, . . . , ek. Put

fk+1 = vnk+1 −
∑

1≤i≤k

〈vnk+1 , ei〉ei

and
ek+1 =

fk+1

|fk+1|

Then induction on k proves that the collection of all finite linear combinations of e1, . . . , ek is the same as
the collection of all finite linear combinations of v1, v2, v3, . . . , vnk

. Thus, the collection of all finite linear
combinations of the orthonormal set e1, 32, . . . is dense in V , so this is an orthonormal basis.
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