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Garrett: `Bernstein's analytic continuation of complex powers' 2Let f be a polynomial in x1; : : : ; xn with real coe�cients. For complex s, letfs+ be the function de�ned byfs+(x) = f(x)s if f(x) � 0fs+(x) = 0 if f(x) � 0Certainly for <(s) � 0 the function fs+ is locally integrable. For s in this range,we can de�ned a distribution, denoted by the same symbol fs+, byfs+(�) := ZRn fs+(x)�(x) dxwhere � is in C1c (Rn), the space of compactly-supported smooth real-valuedfunctions on Rn.The object is to analytically continue the distribution fs+, as a meromorphic(distribution-valued) function of s. This type of question was considered inseveral provocative examples in I.M. Gelfand and G.E. Shilov's GeneralizedFunctions, volume I. (One should also ask about analytic continuation as atempered distribution). In a lecture at the 1963 Amsterdam Congress, I.M.Gelfand re�ned this question to require further that one show that the `poles'lie in a �nite number of arithmetic progressions.Bernstein proved the result in 1967, under a certain `regularity' hypothesis onthe zero-set of the polynomial f . (Published in Journal of Functional Analysisand Its Applications, 1968, translated from Russian).The present discussion includes some background material from complexfunction theory and from the theory of distributions.
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1 Analytic continuation of distributionsFirst we recall the nature of the topologies on test functions and on distributions.Let C1c (U) be the collection of compactly-supported smooth functions withsupport inside a set U � Rn. As usual, for U compact, we have a countablefamily of seminorms on C1c (U):��(f) := supx jD�f jwhere for � = (�1; : : : ; �n) we write, as usual,D� = � @@x1��1 : : :� @@xn��nIt is elementary to show that (for U compact) C1c (U) is a complete, locallyconvex topological space (a Frechet space). To treat U not necessarily compact(e.g., Rn itself) let U1 � U2 � : : :be compact subsets of U so that their union is all of U . Then C1c (U) is theunion of the spaces C1c (Ui), and we give it with the locally convex direct limittopology.The spaces D�(U) and D�(Rn) of distributions on U and on Rn, respec-tively, are the continuous duals of D(U) = C1c (U) and D(Rn) = C1c (Rn). Forpresent purposes, the topology we put on the continuous dual space V � of atopological vectorspace V is the weak-� topology: a sub-basis near 0 in V � isgiven by sets Uv;� := f� 2 V � : j�(v)j < �gIn this context, a V �-valued function f on an open subset 
 of C is holo-morphic on 
 if, for every v 2 V , the C-valued functionz ! f(z)(v)on 
 is holomorphic in the usual sense. This notion of holomorphy might bemore pedantically termed `weak-� holomorphy', since reference to the topologymight be required.If zo 2 
 for an open subset 
 of C and f is a holomorphic V �-valuedfunction on 
 � zo, say that f is weakly meromorphic at zo if, for everyv 2 V , the C-valued function z ! f(z)(v) has a pole (as opposed to essentialsingularity) at zo. Say that f is strongly meromorphic at zo if the orders ofthese poles are bounded independently of v. That is, f is strongly meromorphic



Garrett: `Bernstein's analytic continuation of complex powers' 4at zo if there is an integer n and an open set 
 containing zo so that, for allv 2 V the C-valued function z ! (z � zo)nf(z)(v)is holomorphic on 
. If n is the least integer f so that (z�zo)nf is holomorphicat zo, then f is of order �n at zo, etc.To say that f is strongly meromorphic on an open set 
 is to requirethat there be a set S of points of 
 with no accumulation point in 
 so that fis holomorphic on 
� S, and so that f is strongly meromorphic at each pointof S.For brevity, but risking some confusion, we will often say `meromorphic'instead of `strongly meromorphic'.2 Statement of the theorems on analytic continua-tionLet O be the polynomial ring R[x1; : : : ; xn]. For z 2 Rn, let Oz be the localring at z, i.e., the ring of ratios P=Q of polynomials where the denominatordoes not vanish at z. Let mz be the maximal ideal of Oz consisting of elementsof Oz whose numerator vanishes at z. Let Iz (depending upon f) be the idealin Oz generated by @f@x1 ; : : : ; @f@xnA point z 2 Rn is simple with respect to the polynomial f if� f(z) = 0� for some N we have Iz �mNz� There are �i 2mz so that f =Pi �i @f@xiRemarks: The second condition is equivalent to the assertion that Oz=Iz is�nite-dimensional. The simplest situation in which the second condition holdsis when Iz = Oz, i.e., some partial derivative of f is non-zero at z. The thirdcondition does not follow from the �rst two. For example, Bernstein points outthat with f(x; y) = x5 + y5 + x2y2the �rst two conditions hold but the third does not.Theorem (local version): If z is a simple point with respect to f , thenthere is a neighborhood U of x so that the distributionfs+;U (�) := Z fs+(x)�(x) dx



Garrett: `Bernstein's analytic continuation of complex powers' 5on test functions � 2 C1c (U) on U has an analytic continuation to a meromor-phic element in the continuous dual of C1c (U).Theorem (global version): If all real zeros of f(x) are simple (with respectto f), then fs+ is a meromorphic (distribution-valued) function of s 2 C.3 Bernstein's proofLet Rz be the ring of linear di�erential operators with coe�cients in Oz . Notethat Rz is both a left and a right O-module: for D 2 Rz, for f; g 2 O and � asmooth function near z, the de�nition is(fDg)(�) := f D(g�)Lemma: There is a di�erential operator D 2 Rz and a non-zero `Bernsteinpolynomial' H in a single variable so thatD(fn+1) = H(n)fnfor any natural number n. (Proof below.)Proof of Local Theorem from Lemma: Let U be a small-enough neighbor-hood of z so that on it all coe�cients of D are holomorphic on U . For su�cientlylarge natural numbers n the function fn+1+ is continuously di�erentiable, so wehave Dfn+1+ = H(n)fn+For each �xed � 2 C1c (U) consider the functiong(s) := (Dfs+1+ �H(s)fs+)(�)The hypotheses of the proposition below are satis�ed, so the equality for alllarge-enough natural numbers implies equality everywhere:Dfs+1+ = H(s)fs+This gives us fs+ = Dfs+1+H(s)Now we claim that for any 0 � n 2 Z the distribution fs+ on C1c (U) ismeromorphic for <(s) > �n. For n = 0 this is certain. The formula justderived then gives the induction step. Further, this argument makes clear thatthe `poles' of fs+ restricted to C1c (U) are concentrated on the �nite collectionof arithmetic progressions �i; �i � 1; �i � 2; : : :



Garrett: `Bernstein's analytic continuation of complex powers' 6where the �i are the roots of H(s). In particular, the order of the pole of fs+ ata point so is equal to the number of roots �i so that so lies among�i; �i � 1; �i � 2; : : :In particular, the distribution fs+ really is (strongly) meromorphic. This provesthe Theorem, granting the Lemma and granting the Proposition. |Proposition (attributed by Bernstein to `Carlson'): If g is an analyticfunction for <s > 0 and jg(s)j < bec<s and if g(n) = 0 for all su�ciently largenatural numbers n, then g � 0.Proof of Global Theorem: Invoking the Local Theorem and its proof above,for each z 2 Rn we choose a neighborhood Uz of z in which fs+ is meromorphic,so that Uz is Zariski-open, i.e., is the complement of a �nite union of zero setsof polynomials. Indeed, writingf(x) =X �i @f@xiwith �i 2 Oz, as in the proof of the Local Theorem, let �i = gi=hi withpolynomials gi and hi, and take Uz to be the complement of the union of thezero-sets of the denominators hi.Then Hilbert's Basis Theorem implies that the whole Rn is covered by�nitely-many Uz1 ; : : : ; Uzn of these Zariski-opens. Then make a partition ofunity subordinate to this �nite cover, i.e., take  1; : : : ;  n so that  i � 0,P i � 1, and spt i � Uzi . Thenfs+ =Xi  ifs+By choice of the neighborhoods Uzi , the right-hand side is a �nite sum of mero-morphic (distribution-valued) functions.4 Proof of the Lemma: the Bernstein polynomialNow we prove existence of the di�erential operator D and the 'Bernstein poly-nomial' H . This is the most serious part of this proof. (The complex functiontheory proposition is not entirely trivial, but is approximately standard).Proof of Lemma: Let P :=X �i @@xi 2 Rzwhere the �i 2mz are so thatf =X �i @f@xi 2 Rz



Garrett: `Bernstein's analytic continuation of complex powers' 7Also put Si := @f@xiP � f @@xi= @f@xi (P + 1)� @@xiQThen we have P (f) =Xi �i @f@xi = fSif = @f@xi f � f @f@xi = 0Thus, by Leibniz' formula,P (fn) = nfn Si(fn) = 0Sublemma: There is a non-zero polynomialM in one variable so thatM(P )can be written in the form M(P ) =Xi Ji @f@xifor some Ji 2 Rz .Proof of Sublemma: Write, as usual,j�j = �1 + : : :+ �nFor a natural number m, writePm = Xj�j�m D� m;�where m;� 2 Oz. That is, we move all the coe�cients to the right of thedi�erential operators. That this is possible is easy to see: for example,xi @@xj � @@xj xiis 0 or �1 as i = j or not.Further, the coe�cients m;� are polynomials in the �i. Thus,m;� 2mj�jzThen taking M(P ) of the formM(P ) = Xm�q bm Pm =Xm;� D�bmm;�



Garrett: `Bernstein's analytic continuation of complex powers' 8with bm 2 R, the condition of the sublemma will be met ifXm bmm;� 2 Izfor all indices �. If j�j � N , where I �mN , then this condition is automaticallyful�lled. Thus, there are �nitely-many conditionsXm bm�m;� = 0where �m;� is the image of m;� in Oz=mNz . Since the latter quotient is, byhypothesis, a �nite-dimensional vector space, the collection of such conditionsgives a �nite collection of homogeneous equations in the coe�cients bm. Morespeci�cally, there are dim Oz=mNz � cardf� : j�j < Ngsuch conditions. By taking q large enough we assure the existence of a non-trivial solution fbmg. This proves the Sublemma. |Returning to the proof of the Lemma: as an equation in RzM(P )(P + 1) =X Ji @@xi (P + 1) =X JiSi +XJi @@xi fNow put D =X Ji @@xiH(P ) =M(P )(P + 1)Then we have D(fn+1) = (X Ji @@xi f)(fn) == H(P )(fn) = H(n)fnas desired. This proves the Lemma, constructing the di�erential operator D. |5 Proof of the Proposition: estimates on zerosThe result we need is a standard one from complex function theory, although itis not so elementary as to be an immediate corollary of Cauchy's Theorem:Proposition: If g is an analytic function for <s > 0 and jg(s)j < bec<s andif g(n) = 0 for all su�ciently large natural numbers n, then g � 0.Proof of Proposition: ConsiderG(z) := e�c g(z + 1z � 1)



Garrett: `Bernstein's analytic continuation of complex powers' 9Then g is turned into a bounded function G on the disc, with zeros at points(n� 1)=(n+ 1) for su�ciently large natural numbers n.We claim that, for a bounded function G on the unit disc with zeros �i,either G � 0 or Xi (1� j�ij) < +1If we prove this, then in the situation at hand the natural numbers aremapped to �n := (n� 1)=(n+ 1) = 1� 1n+ 1so here Xn (1� j�nj) =Xn 1n+ 1 = +1Thus, we would conclude G � 0 as desired.We recall Jensen's formula: for any holomorphic function G on the unit discwith G(0) 6= 0 and with zeros �1; : : :, for 0 < r < 1 we havejG(0)j�j�ij�r rj�ij = exp� 12� Z ��� log jG(rei�)j d��Granting this, our assumed boundedness of G on the disc gives us an absoluteconstant C so that for all N jG(0)j�j�ij�r rj�ij � C(We can harmlessly divide by a suitable power of z to guarantee that G(0) 6= 0.)Then, letting r ! 1, � j�ij � jG(0)j�1C�1For an in�nite product of positive real numbers j�ij less than 1 to have a value> 0, it is elementary that we must haveXi (1� j�ij) < +1as claimed. This proves the proposition. |While we're here, let's recall the proof of Jensen's formula (e.g., as in Rudin'sReal and Complex Analysis, page 308). Fix 0 < r < 1 and letH(z) := G(z)� r2 � ��zr(�� z) � ��� zwhere the �rst product is over roots � with j�j < r and the second is over rootswith j�j = r. Then H is holomorphic and non-zero in an open disk of radius



Garrett: `Bernstein's analytic continuation of complex powers' 10r + � for some � > 0. Thus, log jH j is harmonic in this disk, and we have themean value property log jH(0)j = 12� Z ��� log jH(rei�)j d�On one hand, jH(0)j = jG(0)j� rj�jOn the other hand, if jzj = r the factorsr2 � ��zr(�� z)have absolute value 1. Thus,log jH(rei�)j = log jG(rei�)j � Xj�j=r log j1� ei(��arg �)jwhere ei arg � = �As noted in Rudin (see below),12� Z ��� log j1� ei�j d� = 0Therefore, the integral appearing in the assertion of the mean value propertyis unchanged upon replacing H by G. Putting this all together gives Jensen'sformula. |And let's do the integral computation, following Rudin. There is a function�(z) on the open unit disc so thatexp(�(z)) = 1� zsince the disc is simply-connected. We uniquely specify this � by requiring that�(0) = 0. We have <�(z) = log j1� zj and j=�(z)j < �2Let � > 0 be small. Let � = �� be the path which goes (counterclockwise)around the unit circle from ei� to e(2���)i and let  = � be the path whichgoes (clockwise) around a small circle centered at 1 from e(2���)i to ei� . Then12� Z 2�0 log j1� ei�j d� = lim�!0 12� Z 2���� log j1� ei�j d� =



Garrett: `Bernstein's analytic continuation of complex powers' 11= < � 12�i Z� �(z) dzz � == < � 12�i Z �(z) dzz �by Cauchy's theorem.Elementary estimates show that the latter integral has a bound of the formC � log(1=�)which goes to 0 as � ! 0.


