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Let f be a polynomial in z1, ..., z, with real coefficients. For complex s, let
f3 be the function defined by

fi(@) = fle)® if f(z) 20

fi(@) =0 if f(z) <0

Certainly for R(s) > 0 the function ff is locally integrable. For s in this range,
we can defined a distribution, denoted by the same symbol f7, by

fi(9) = fi(z) ¢(z) dzx

JR™

where ¢ is in C°(R"), the space of compactly-supported smooth real-valued
functions on R™.

The object is to analytically continue the distribution f, as a meromorphic
(distribution-valued) function of s. This type of question was considered in
several provocative examples in I.M. Gelfand and G.E. Shilov’s Generalized
Functions, volume I. (One should also ask about analytic continuation as a
tempered distribution). In a lecture at the 1963 Amsterdam Congress, I.M.
Gelfand refined this question to require further that one show that the ‘poles’
lie in a finite number of arithmetic progressions.

Bernstein proved the result in 1967, under a certain ‘regularity’ hypothesis on
the zero-set of the polynomial f. (Published in Journal of Functional Analysis
and Its Applications, 1968, translated from Russian).

The present discussion includes some background material from complex
function theory and from the theory of distributions.
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1 Analytic continuation of distributions

First we recall the nature of the topologies on test functions and on distributions.
Let C°(U) be the collection of compactly-supported smooth functions with
support inside a set U C R™. As usual, for U compact, we have a countable
family of seminorms on C2°(U):

o (f) = St;p\D”f\

where for v = (v1,...,v,) we write, as usual,

v 6 v 6 Vn

It is elementary to show that (for U compact) C°(U) is a complete, locally
convex topological space (a Frechet space). To treat U not necessarily compact
(e.g., R" itself) let

UrcUsC...

be compact subsets of U so that their union is all of U. Then C°(U) is the
union of the spaces C>°(U;), and we give it with the locally convex direct limit
topology.

The spaces D*(U) and D*(R"™) of distributions on U and on R", respec-
tively, are the continuous duals of D(U) = C°(U) and D(R") = C°(R"). For
present purposes, the topology we put on the continuous dual space V* of a
topological vectorspace V is the weak-x topology: a sub-basis near 0 in V* is

given by sets
Upe :={A eV |A(v)| < €}

In this context, a V*-valued function f on an open subset Q of C is holo-
morphic on ( if, for every v € V, the C-valued function

z = f(2)(v)

on {2 is holomorphic in the usual sense. This notion of holomorphy might be
more pedantically termed ‘weak-* holomorphy’, since reference to the topology
might be required.

If z, € Q for an open subset 2 of C and f is a holomorphic V*-valued
function on Q — z,, say that f is weakly meromorphic at z, if, for every
v € V, the C-valued function z — f(z)(v) has a pole (as opposed to essential
singularity) at z,. Say that f is strongly meromorphic at z, if the orders of
these poles are bounded independently of v. That is, f is strongly meromorphic
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at z, if there is an integer n and an open set () containing z, so that, for all
v € V the C-valued function

z = (2= 2)"f(2)(v)

is holomorphic on €. If n is the least integer f so that (z —z,)" f is holomorphic
at z,, then f is of order —n at z,, etc.

To say that f is strongly meromorphic on an open set () is to require
that there be a set S of points of 2 with no accumulation point in ) so that f
is holomorphic on 2 — S, and so that f is strongly meromorphic at each point
of S.

For brevity, but risking some confusion, we will often say ‘meromorphic’
instead of ‘strongly meromorphic’.

2 Statement of the theorems on analytic continua-
tion

Let O be the polynomial ring R[z1,...,z,]. For z € R", let O, be the local
ring at z, i.e., the ring of ratios P/Q of polynomials where the denominator
does not vanish at z. Let m, be the maximal ideal of O, consisting of elements
of O, whose numerator vanishes at z. Let I. (depending upon f) be the ideal
in O, generated by

of of

0z’ Oz,

A point z € R" is simple with respect to the polynomial f if
. f(z)=0

e for some N we have I, D mY

e There are a; € m; so that f =", «; %

Remarks: The second condition is equivalent to the assertion that O, /I, is
finite-dimensional. The simplest situation in which the second condition holds
is when I, = O,, i.e., some partial derivative of f is non-zero at z. The third
condition does not follow from the first two. For example, Bernstein points out
that with

fla,y) = 2° +y° + 2%y

the first two conditions hold but the third does not.
Theorem (local version): If z is a simple point with respect to f, then
there is a neighborhood U of 2 so that the distribution

f20(@) = / £ (@) (z) de
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on test functions ¢ € C°(U) on U has an analytic continuation to a meromor-
phic element in the continuous dual of C°(U).

Theorem (global version): If all real zeros of f(z) are simple (with respect
to f), then f3 is a meromorphic (distribution-valued) function of s € C.

3 Bernstein’s proof

Let R, be the ring of linear differential operators with coefficients in O,. Note
that R, is both a left and a right O-module: for D € R,, for f,g € O and ¢ a
smooth function near z, the definition is

(fDg)(¢) := f D(g9)

Lemma: There is a differential operator D € R, and a non-zero ‘Bernstein
polynomial’ H in a single variable so that

D(f"*) = H(n)f"

for any natural number n. (Proof below.)

Proof of Local Theorem from Lemma: Let U be a small-enough neighbor-
hood of z so that on it all coefficients of D are holomorphic on U. For sufficiently
large natural numbers n the function fﬁ“ is continuously differentiable, so we
have

Dfy™ = H(n)f}
For each fixed ¢ € C2°(U) consider the function
9(s) == (DI — H(s)f3)(9)

The hypotheses of the proposition below are satisfied, so the equality for all
large-enough natural numbers implies equality everywhere:

Df{t = H(s)f}

This gives us

o DI

T H(s)
Now we claim that for any 0 < n € Z the distribution f} on C°(U) is
meromorphic for R(s) > —n. For n = 0 this is certain. The formula just

derived then gives the induction step. Further, this argument makes clear that
the ‘poles’ of fi restricted to C2°(U) are concentrated on the finite collection
of arithmetic progressions

Aishi — LA —2,...
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where the ); are the roots of H(s). In particular, the order of the pole of f{ at
a point s, is equal to the number of roots A; so that s, lies among

Aohi LA -2,

In particular, the distribution f{ really is (strongly) meromorphic. This proves
the Theorem, granting the Lemma and granting the Proposition. [

Proposition (attributed by Bernstein to ‘Carlson’): If g is an analytic
function for s > 0 and |g(s)| < be™ and if g(n) = 0 for all sufficiently large
natural numbers n, then g = 0.

Proof of Global Theorem: Invoking the Local Theorem and its proof above,
for each z € R"™ we choose a neighborhood U, of z in which f} is meromorphic,
so that U, is Zariski-open, i.e., is the complement of a finite union of zero sets
of polynomials. Indeed, writing

fmzzm%;

with a; € O,, as in the proof of the Local Theorem, let a; = g¢;/h; with
polynomials g; and h;, and take U, to be the complement of the union of the
zero-sets of the denominators h;.

Then Hilbert’s Basis Theorem implies that the whole R™ is covered by
finitely-many U,,,...,U,, of these Zariski-opens. Then make a partition of

unity subordinate to this finite cover, i.e., take v¥y,...,%, so that ¢; > 0,
> ¢; =1, and spte)y; C Us,. Then

£=3 wifg

By choice of the neighborhoods U,,, the right-hand side is a finite sum of mero-
morphic (distribution-valued) functions.

4 Proof of the Lemma: the Bernstein polynomial

Now we prove existence of the differential operator D and the 'Bernstein poly-

nomial’ H. This is the most serious part of this proof. (The complex function

theory proposition is not entirely trivial, but is approximately standard).
Proof of Lemma: Let

0
P::Zaia_xieRz

where the a; € m, are so that

fzzai%ERz
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Also put
__of 0]
_of d
N a’I‘l(P_'_ 1) B a’I‘ZQ

Then we have

P =Y aiglh =

_9f

of
= o, =

0

Sif f=r

Thus, by Leibniz’ formula,
P(f")=nf" S;(f")=0

Sublemma: There is a non-zero polynomial M in one variable so that M (P)
can be written in the form

0

for some J; € R...
Proof of Sublemma: Write, as usual,

v=vi +... 4 v,
For a natural number m, write
P™ = E D v
lv|<m

where v,,, € O.. That is, we move all the coefficients to the right of the
differential operators. That this is possible is easy to see: for example,

0 0
T;— —

833]' 8_37]

€T

is 0 or —1 as ¢ = j or not.
Further, the coefficients v, , are polynomials in the «;. Thus,

v
Ym,w € m‘z |

Then taking M (P) of the form

M(P) =" by P™ =" Dby

m<gq
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with b, € R, the condition of the sublemma will be met if
> bmYmw € I

for all indices v. If [v| > N, where I D m”, then this condition is automatically
fulfilled. Thus, there are finitely-many conditions

Z bm:}/m,u =0

where 7, , is the image of v,,, in O,/m). Since the latter quotient is, by
hypothesis, a finite-dimensional vector space, the collection of such conditions
gives a finite collection of homogeneous equations in the coefficients b,,. More
specifically, there are

dim O./m? x card{v: |v| < N}

such conditions. By taking ¢ large enough we assure the existence of a non-
trivial solution {b,,}. This proves the Sublemma. &
Returning to the proof of the Lemma: as an equation in R,

M(P)(P +1) ZJ (P +1) ZJiSi+ZJiaif
Now put
)
D_Zjia—ri
H(P) = M(P)(P +1)

Then we have
fn+1

= H(P)(f" )= (n)f”

as desired. This proves the Lemma, constructing the differential operator D. &

5 Proof of the Proposition: estimates on zeros

The result we need is a standard one from complex function theory, although it
is not so elementary as to be an immediate corollary of Cauchy’s Theorem:
Proposition: If g is an analytic function for s > 0 and |g(s)| < be®* and
if g(n) = 0 for all sufficiently large natural numbers n, then g = 0.
Proof of Proposition: Consider

z+1
z—1

G(z) =€ “g(-—)
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Then g is turned into a bounded function G on the disc, with zeros at points
(n —1)/(n+ 1) for sufficiently large natural numbers n.
We claim that, for a bounded function G on the unit disc with zeros p;,

either G =0 or
Z (1—1pil) < +00
i
If we prove this, then in the situation at hand the natural numbers are
mapped to

1
= (n—1 =1-
pui=(n=1)f(n+1) =1 - ——
so here 1
D dpal) =30 g =0

Thus, we would conclude G = 0 as desired.
We recall Jensen’s formula: for any holomorphic function G on the unit disc
with G(0) # 0 and with zeros pq, ..., for 0 < r < 1 we have

r 1 [" i
GOy = e {5 [ 10g (Gt a0}

Granting this, our assumed boundedness of G on the disc gives us an absolute
constant C' so that for all N
r
|GO)| My, < 7 < C
|pil

(We can harmlessly divide by a suitable power of z to guarantee that G(0) # 0.)
Then, letting r — 1,
I pi| <|G(0) 710!

For an infinite product of positive real numbers |p;| less than 1 to have a value
> (, it is elementary that we must have

Z (1= |pif) < +o0

as claimed. This proves the proposition. &
While we’re here, let’s recall the proof of Jensen’s formula (e.g., as in Rudin’s
Real and Complex Analysis, page 308). Fix 0 < r < 1 and let

2 =
T sz p
rlp—z) p—=

H(z) =G(2)1I

where the first product is over roots p with |p| < r and the second is over roots
with |p| = r. Then H is holomorphic and non-zero in an open disk of radius
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r + € for some € > 0. Thus, log|H| is harmonic in this disk, and we have the
mean value property

1 (" :
log |H(0)| = —/ log | H (re')| dé

2 J_ .

On one hand,

|H(0)| = |G(0)|T —
1d

On the other hand, if |z| = r the factors

r2 — pz
r(p—2)

have absolute value 1. Thus,

log |H(re')| =log |G(re)| — > log|1 — /! )]
[o|=r

where
etargp — p

As noted in Rudin (see below)

1 4 :

— log |1 —e“dh =0

2 J_,
Therefore, the integral appearing in the assertion of the mean value property
is unchanged upon replacing H by G. Putting this all together gives Jensen’s
formula. &

And let’s do the integral computation, following Rudin. There is a function

A(z) on the open unit disc so that

exp(A(z)) =1—2

since the disc is simply-connected. We uniquely specify this A by requiring that
A(0) = 0. We have

RA(z) =log |l — z|] and [SA(2)] < g
Let § > 0 be small. Let I' = I's be the path which goes (counterclockwise)

around the unit circle from e? to e>*=97 and let 4 = 75 be the path which
goes (clockwise) around a small circle centered at 1 from e(?>*~%)? to €. Then

1 27 ) 1 27 —§ )
—/ log\l—ew\dézlim—/ log |1 — €| df =
2w 0 6—0 27 5
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1 dz
= e )\ — | =
R [2m' /F ()7 ]
1
2 ~ z
by Cauchy’s theorem.

Elementary estimates show that the latter integral has a bound of the form
C ¢ log(1/6)

which goes to 0 as § — 0.



