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This note is essentially a rewrite of Appendix V of J. Dixmier’s von Neumann Algebras, North Holland, 1981.

The point is to obtain the practical special case:

[0.0.1] Corollary: Let X be a locally compact Hausdorff second-countable [1] topological space with a
complete positive Borel measure ν giving compacta finite measure. Let Y be a complete second-countable
metric space, Γ a Borel subset of X×Y . Let Xo be the projection of Γ to X. [2] Then there is a ν-measurable
function f : Xo → Y whose graph lies inside Γ. ///

Using terms defined just below which are convenient to indicate the sharp hypotheses for the result, the
theorem itself is

[0.0.2] Theorem: Let X and Y be polish spaces and Γ a Souslin subset of X×Y . Let Xo be the projection
of Γ to X (so is Souslin). Then there is a weakly Souslin map f : Xo → Y whose graph is contained in Γ.

It is best to arrange things properly prior to the proof.

A topological space is polish if it is a second-countable (i.e., it has a countable basis) complete metric [3]

space. A countable product of polish spaces Xn with metrics dn is polish, with metric [4]

d({xn}, {yn}) =
∑
n≥1

2−n
dn(xn, yn)

1 + dn(xn, yn)

A countable disjoint union [5] of polish spaces is polish, with metric

d(x, y) =

{
1 (for x, y in distinct spaces in the union)

dn(x, y) (for x, y in the nth space in the union)

A closed subset of a polish space is polish. Slightly surprisingly, an open subset of a polish space is polish:
let F be the complement of the open subset U of a polish space X with metric d, and define a metric δ on
U by

δ(x, y) = d(x, y) +
∣∣d(x, F )−1 − d(y, F )−1

∣∣
[1] This is the usual not-so-intuitive way to say that X has a countable basis.

[2] It follows that Xo is ν-measurable. See later discussion.

[3] As may become apparent along the way, one might distinguish metric spaces from metrizable. For example, many

different metrics may give the same topology. But this is not at all the main point here.

[4] There are many other similarly-defined metrics that give a homeomorphic topology on the product. In particular,

we acknowledge that this metric is very much not canonical. At the same time, creating a formalism concerning

equivalence classes of metrics is not a high priority at this moment, so we will not do it.

[5] The countability of the union is necessary for that union to still have a countable basis. The metrizability of the

union does not depend upon the countability.
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The space N of positive integers with the usual metric inherited from the real numbers R is polish. Then
the countable product NN with metric (as above)

d({mi}, {ni}) =
∑
i≥1

2−i
|mi − ni|

1 + |mi − ni|

is polish.

For X a polish space, there is a continuous surjection NN → X, given as follows. Given ε > 0 there is a
countable covering of X by closed sets of diameter less than ε. From this one may contrive [6] a map F from
finite sequences n1, . . . , nk in N to closed sets F (n1, . . . , nk) in X such that
• F (φ) = X
• F (n1, . . . , nk) = F (n1, . . . , nk, 1) ∪ F (n1, . . . , nk, 2) ∪ F (n1, . . . , nk, 3) ∪ . . .
• The diameter of F (n1, . . . , nk) is less than 2−k.

Then for y = {ni} ∈ NN the sequence Ei = F (n1, . . . , nk) is a nested sequence of closed subsets of X with
diameters less than 2−k, respectively. Thus,

⋂
i Ei consists of a single point of X. On the other hand, every

x ∈ X lies inside some
⋂
i Ei. Continuity is straightforward to verify.

A second-countable locally-compact Hausdorff [7] space is polish: [8] let Ui be a countable basis of opens
with compact closures Ki, and let Vi be open with compact closure and containing Ki. From Urysohn’s
Lemma, let 0 ≤ fi ≤ 1 be continuous functions identically 0 off Vi, identically 1 on Ki, and put

d(x, y) =
∑
i

2−i
∣∣∣fi(x)− fi(y)

∣∣∣ +
∣∣∣ 1∑

i 2−ifi(x)
− 1∑

i 2−ifi(y)

∣∣∣
The triangle inequality for the usual absolute value shows that this is a metric. This metric gives the same
topology, and it is straightforward to verify its completeness, once that peculiar last term is added, which
prevents seemingly-Cauchy sequences from escaping to infinity.

A Souslin set is a continuous image of a polish space in another polish space.

Countable unions of Souslin sets are Souslin: for fn : Xn → Y a countable collection of continuous maps
from polish Xn to polish Y , then the disjoint union of the Xn is polish, and the obvious map [9]

f(x) = fn(x) (for x ∈ Xn)

from the disjoint union to Y is continuous, realizing the countable union of the images as a continuous image
of a polish space.

[6] There are many such maps F . In particular, one should not hope for canonicalness.

[7] The hypothesis of Hausdorff-ness is too strong, though is easier to understand than the correct hypothesis. That

is, Urysohn’s Metrization Theorem (as in J. Kelley, General Topology, Van Nostrand, 1955), shows that a regular

T1-space with a countable basis is metrizable. Recall that regular means that for each x in the space and for each

open neighborhood U of x there is a neighborhood V of x such that the closure of V is inside U . The T1 hypothesis

is that all singleton sets {x} are closed. We are not presently concerned with implications among these hypotheses.

[8] Thanks to Jan van Casteren for twice pointing out flaws in previous versions, and indicating repairs. On the

third try, I hope things are correct! He also noted a useful reference: T. Kechris, Classical descriptive set theory,

Graduate Texts in Math. 156, Springer-Verlag, 1995. Theorem 5.3, page 29, proves equivalences between several

related notions.

[9] From a slightly more categorical viewpoint, this observation is about coproducts.
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Countable intersections of Souslin sets are Souslin: let fn : Xn → Y be continuous maps of polish spaces,
let X be the cartesian product of the Xn, and define

Q = {{xn} ∈ X : fm(xm) = fn(xn) for all m,n}

Since Q is a closed subspace of a polish space, it is polish. The It continuously surjects to the intersection
of the images fn(Xn) since the map f : Q→ Y defined by

f({xn}) = f1(x1)

is well-defined.

Since closed and open subsets of polish spaces are polish, and since inclusion maps are continuous, both
open and closed subsets of polish spaces are polish. In particular, the set of subsets E of a polish space X
such that E is Souslin and the complement X −E is Souslin is a σ-algebra containing the Borel sets. [10] In
particular, in polish spaces Borel implies Souslin.

A countable intersection of countable unions of compact sets is called a Kσδ-set.

Given a pre-compact [11] set E in a polish space Y , there is a compact polish space X, a Kσδ-set Xo in
X, and continuous f : X → Y such that f(Xo) = E. Indeed, we may suppose that Y is the closure of E,
so is compact. Let ϕ : NN → E be a continuous surjection, as described above. Let Ñ be the one-point
compactification of N. Then NN is the intersection of a sequence of opens Ui in ÑN. Let X = ÑN × Y and
f : X → Y the projection. Let Xo be the graph of ϕ in NN × Y ⊂ ÑN × Y . Certainly f(Xo) = E. Since ϕ

is continuous, Xo is closed [12] in NN × Y .

The closure Xo of Xo in X is compact, since X is compact and Hausdorff. Then

Xo = Xo ∩ (NN × Y )

NN × Y = (
⋂
i

Ui)× Y =
⋂
i

(Ui × Y )

An open Ui in ÑN is a countable union of closed (hence compact) subsets of ÑN, so Ui × Y is indeed a
countable union of compact subsets of X. ///

[0.0.3] Proposition: In a locally compact Hausdorff second-countable (hence, polish) space Y , given a
positive Borel measure ν, a Souslin set E in X is ν-measurable with respect to the completion of ν. That is,
given ε > 0 there are open U and compact K such that K ⊂ E ⊂ U and ν(U)− ν(K) < ε, and, further, if
the outer measure

ν∗(E) = inf
open U⊃E

ν(U)

is ν∗(E) = +∞, then the inner measure

ν∗(E) = sup
compact K⊂E

ν(K)

[10] The set of Borel sets in a topological space X is, by definition, the smallest σ-algebra containing the open sets in

X.

[11] Here pre-compact means having compact closure. By contrast, the precise import of the term in non-metrizable

spaces can be more complicated.

[12] With Hausdorff spaces A,B and a map f : A → B, continuity of f can readily be shown to be equivalent to

closedness of the graph of f .
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is ν∗(E) = +∞ as well.

Proof: Let X be compact, Xo a Kσδ-set in X, and f : X → Y continuous such that f(Xo) = E. Let

Xo = (C11 ∪ C12 ∪ C13 ∪ . . .) ∩ (C21 ∪ C22 ∪ C23 ∪ . . .) ∩ . . .

be an expression for Xo where all the Cij are compact. Without loss of generality, Cij ⊂ Ci,j+1 for all i, j.
Take t < ν∗(E). We will find a compact X1 ⊂ Xo such that ν(f(X1)) ≥ t. Since f(X1) is compact, this will
suffice to prove the proposition.

To this end, we claim that there is a sequence {ni} of integers such that the sets

Dk = Xo ∩ C1,n1 ∩ C2,n2 ∩ . . . ∩ Ck,nk

have the property that ν∗(f(Dk)) > t for all k. Indeed, first take n1 sufficiently large such that Xo ∩ C1,n1

has measure above t. Then, for the induction step, given ni for i < `, since

D`−1 ⊂ Xo ⊂ C`1 ∪ C`2 ∪ C`3 ∪ . . .

we have
D`−1 = (D`−1 ∩ C`1) ∪ (D`−1 ∩ C`2) ∪ (D`−1 ∩ C`3) ∪ . . .

Since C`j ⊂ C`j+1, as i→∞,
ν∗(f(D`−1 ∩ C`i))→ ν∗(f(D`−1))

Thus, for n` sufficiently large,
ν∗(f(D`−1 ∩ C`i)) > t

This proves the claim

To prove the proposition, let
X1 = D1 ∩D2 ∩ . . . = C1n1

∩ C2n2
∩ . . .

Since the partial intersections
C1n1 ∩ C2n2 ∩ . . . ∩ Cknk

form a decreasing sequence of compacts with intersection X1, that intersection X1 is compact, and f(X1) is
compact, and

f(X1) =
⋂
k

f(C1n1
∩ C2n2

∩ . . . ∩ Cknk
)

Thus,
ν(f(X1)) = lim

k
ν (f(C1n1

∩ C2n2
∩ . . . ∩ Cknk

)) ≥ lim
k
ν∗(f(Dk)) ≥ t

by the construction. Thus, Souslin sets are measurable. ///

[0.0.4] Remark: In second-countable locally compact Hausdorff spaces inner and outer measures associated
to ν coincide with ν on opens and compacts, if all compacts have finite measure. We do assume that compacta
have finite measure.

[0.0.5] Proposition: Totally order NN lexicographically. Then every closed subset E of NN has a least
element.

Proof: Let n1 be least in N such that there is x = (n1, . . .) in E. Let n2 be the least in N such that there
is x = (n1, n2, . . .) in E, and so on. Choosing the ni inductively, let xo = (n1, n2, n3, . . .). This xo satisfies
xo ≤ x in the lexicographic ordering for every x ∈ E, and xo is in the closure of E in the metric topology
introduced earlier. ///
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Now let Q be the subset of NN consisting of sequences with only finitely-many entries > 1. For x, y ∈ NN

put
[x, y) = {z ∈ NN : x ≤ z < y}

(∗, y) = {z ∈ NN : z < y}

We claim that every open U in NN is a (countable) union of sets [x, y) with x, y. Indeed, given z = (z1, z2, . . .)
in U , there is an integer k such that if w = (w1, w2, . . .) has wi = zi for 1 ≤ i ≤ k then w ∈ U . Letting

x = (z1, z2, . . . , zk, 1, 1, 1, . . .)

y = (z1, z2, . . . , zk, zk+1, 1, 1, . . .)

proves the claim. ///

Let X be a polish space, Y a topological space, Xo a subset of X, and f : Xo → Y a map of sets. The map
f is Souslin if

f−1(open set in Y ) = (Souslin set in X) ∩Xo

Let S be the σ-algebra generated by Souslin sets in X. A map of sets f : Xo → Y is weakly Souslin if, for
every open U in Y the inverse image f−1(U) is of the form

f−1(U) = Xo ∩ E

for some E ∈ S.

From above, for X locally compact Hausdorff and second-countable, S consists of ν-measurable [13] sets
for any positive Borel measure ν giving compacta finite measure. Thus, for such X, an assumption that
f : Xo → Y is weakly Souslin implies that f is ν-measurable.

Finally:

Proof: (of Theorem) Let ϕ : NN → Γ be a continuous surjection, with prX and prY the projections of X×Y
to X and Y , respectively. Since prX ◦ ϕ is continuous, the inverse image (prX ◦ ϕ)−1(xo) is closed NN for
any xo, so (from above) has a least element λ(xo) in the lexicographic ordering. The graph of f = prY ◦ϕ◦λ
is a subset of Γ. As prY ◦ ϕ is continuous, to prove f weakly Souslin it suffices to show that λ is weakly
Souslin.

To this end, note that, from above, any open in NN is a countable union of sets [z, w). From the definition
of λ,

λ−1 ([z, w)) = (prX ◦ ϕ)((∗, w))− (prX ◦ ϕ)((∗, z))

Each (∗, w) is open in the polish space NN, so is polish, and its continuous image (prX ◦ϕ)((∗, w)) is Souslin,
by definition. The difference of two such sets is in the σ-algebra in X generated by Souslin sets, as are
countable unions of such. Thus, λ is weakly Souslin, so f is, as well. ///

[13] As earlier, this measurability means measurable with respect to the completion of ν.
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