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This gives some context for Plancherel and spectral decomposition. We want to consider Fourier series and
Fourier transforms as completely simple, straightforward, and intuitive, as suggestive models for automorphic
spectral theory and Sobolev theory.

1. Plancherel for discrete spectral decompositions

The primary example in this section is Fourier series, and differential operator ∆ = d2/dx2. The Plancherel
theorem in this particular case is due to Parseval.

[1.1] Elementary, abstract Plancherel Given an orthonormal basis [1] {vi} in a Hilbert space V , by
definition any vector v ∈ V is a limit of finite linear combinations of the {vi}. In fact, a stronger, simpler

assertion is true: v is expressible as an abstract Fourier series [2]

v =
∑
i

〈v, vi〉 · vi (convergent in V )

meaning that v is the limit of the finite partial subsums. Proof is just below. In this abstract setting,
Plancherel’s (Parseval’s) theorem is relatively elementary, asserting

|v|2 =
∑
i

|〈v, vi〉|2

We prove the abstract Fourier expansion and Plancherel theorem together. For fixed n, from the orthogonality
of the nth tail v −

∑
i≤n〈v, vi〉 · vi to the basis vectors vi for i ≤ n, we first obtain Bessel’s inequality

|v|2 =
∣∣∣∑
i≤n

〈v, vi〉 · vi
∣∣∣2 +

∣∣∣v −∑
i≤n

〈v, vi〉 · vi
∣∣∣2 ≥ ∑

i≤n

|〈v, vi〉|2

In particular, ∑
i

|〈v, vi〉|2 ≤ |v|2

so the infinite sum is convergent, implying a trivial case of a Riemann-Lebesgue lemma: 〈v, vi〉 → 0.

[1] Recall the elementary convention that a basis {vi} in a Hilbert space is not a vector-space basis, but is a basis

for a dense subspace. Indeed, that dense subspace consists precisely of finite linear combinations of the Hilbert-space

basis vectors.

[2] Apparently Fourier did not possess the inner-product expression for (concrete) Fourier coefficients when he first

proposed that functions are expressible in Fourier series. This understandably weakened his claim. Worse, at the

time, notions of convergence and even the notion of function were amorphous, so that the sense(s) in which a function

might be represented by a Fourier series could not be discussed easily.
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More than that, the sequence of partial sums sn =
∑
i≤n〈v, vi〉 · vi is Cauchy in V , so converges to some v′.

That v′ = v follows from continuity of 〈, 〉 and

〈v − v′, vj〉 = 〈v, vj〉 − 〈lim
n
sn, vj〉 = 〈v, vj〉 − 〈v, vj〉 = 0

Since {vj} is a Hilbert-space basis, limn sn = v, proving Plancherel. ///

[1.2] Eigenvector/spectral expansions If those {vi} were eigenvectors for a continuous linear operator
T on V , with eigenvalues Tvi = λivi, then the abstract Fourier expansion of v ∈ V as an infinite linear
combination v =

∑
i ci vi allows easy computation:

Tv = T
(∑

i

ci vi

)
=
∑
i

ci Tvi =
∑
i

ci λi vi

Note that T passes inside the infinite sum because T is continuous. Continuous operators T are bounded, so
the eigenvalues λi are bounded in absolute value, and the eigenvector expansion for Tv still converges in V .

A Hilbert-space orthonormal basis of eigenvectors exists for self-adjoint compact operators[3] T , for example.
This is the content of the spectral theorem for such operators.

For any more general class of operators, there need not be an orthonormal Hilbert-space basis of
eigenfunctions. Yet, in important examples, more can be done, as we do a little later for Fourier transforms.

[1.3] Example of elementary, abstract Plancherel Granting that the exponentials ψξ(x) = e2πixξ with
ξ ∈ Z form an orthonormal basis for L2[0, 1], we first have a Fourier expansion

f =
∑
ξ∈Z
〈f, ψξ〉 · ψξ (convergent in L2[0, 1])

This says nothing about pointwise convergence, and we do not expect it to. The abstract elementary
Plancherel applied to this example asserts that

|f |2 =
∑
ξ∈Z
|〈f, ψξ〉|2

Since the exponentials are eigenfunctions for the ubiquitous operator ∆ = d2/dx2, say that a Fourier
expansion is a spectral expansion, or eigenfunction expansion. The precise nature of convergence must
be clarified in context, as below.

The exponentials are also simultaneous eigenvectors/eigenfunctions for the translation operators
Ryf(x) = f(x+y). In fact, d/dx is the infinitesimal version of translation, in the sense that the fundamental
theorem of calculus gives various useful relations:∫ x

0

f ′(t) dt = f(x)− f(0) and/or f(x) +

∫ x+y

x

f ′(t) dt = f(x+ y)

[1.4] Unbounded operators The ubiquitous linear operator T = ∆ = d2/dx2 is not a continuous linear
endomorphism of L2[0, 1]. This is not a matter of the existence of non-differentiable functions in L2[0, 1].
Rather, even on differentiable functions such as the exponentials ψξ,

| d
2

dx2ψξ|
|ψξ|

=
4π2|ξ|2

1
−→ +∞ (as |ξ| → ∞)

[3] Recall that a compact operator on a Hilbert space is an operator-norm limit of finite-rank operators.
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That is, on the (dense) subspace of differentiable functions in L2[0, 1], T is not bounded, so cannot be
continuous. It is not a matter of artificially defining an operator on non-differentiable functions.

[1.5] Eigenvectors for unbounded operators Although ∆ = d2/dx2 is in no way a continuous operator
on V = L2[0, 1], obviously the exponentials ψξ are eigenvectors. More precisely, ∆ is a well-defined linear
operator stabilizing the subspace Vo of V consisting of smooth functions on [0, 1]. This legitimizes speaking
of the ψξ as eigenfunctions or eigenvectors of ∆.

We are lucky here, that the troublesomely unbounded, but natural, operator ∆ has eigenvectors in V giving
an orthonormal basis for V . In general, there is no reason to expect this.

Here, as generally, proof that an unbounded operator nevertheless has enough eigenvectors to make up an
orthonormal basis amounts to making sense of, and proving, that the resolvent Rz = (∆− z2)−1 with z ∈ C
is a compact operator away from its poles. [4] Of course, most unbounded operators do not have compact
resolvents.

[1.6] Compact resolvents The principal device to prove that an operator (∆− z2)−1 is compact, if it is

so, is to express it as a nice-enough integral operator to demonstrate that it is Hilbert-Schmidt. [5] We want
a function K(x, y) = Kz(x, y) of two variables, preferably continuous, solving (∆− z2)u = f by

u(x) =

∫ 1

0

K(x, y) f(y) dy

Applying ∆− z2 to this and assuming [6] we can pass the differential operator inside the integral,

f(x) = (∆− z2)u(x) =

∫ 1

0

(∆x − z2)K(x, y) f(y) dy

Thus, we want (∆x− z2)K(x, y) = δx(y), with Dirac delta. [7] The standard procedure [8] to obtain K(x, y)
is as follows. Take solutions α, β to the homogeneous equation (∆ − z2)u = 0, such that α(0) = 0 and
β(1) = 0. In fact, the solutions to (∆− z2)u = 0 are e±zx, so we can take

α(x) = sinh zx and β(x) = sinh z(x− 1)

[4] Using ∆− z2 instead of ∆− z avoids square roots subsequently.

[5] Recall that a Hilbert-Schmidt operator T : L2(X) → L2(Y ) is one given by a kernel K(x, y) ∈ L2(X × Y ), by

Tf(y) =
∫
X K(x, y) f(x) dx. It is standard, and not difficult, that these are compact operators.

[6] Differentiating in a parameter under the integral sign is justified by the Gelfand-Pettis theory of so-called weak

integrals. This is not completely elementary, but is straightforward.

[7] In this one-variable situation, an intuitive or heuristic view of δx suffices to suggest the correct course. For

example, δx(y) is the derivative (in y) of the step function

Hx(y) =

{
0 (for y < x)

1 (for y > x)

That is, δx is a spike of total mass 1 concentrated at x.

[8] The kernel K has many classical names, for example Green’s function. The procedure here applies to exhibit

compact resolvents of somewhat more general second-order one-variable differential equations, called Sturm-Liouville

problems. Kodaira and Titchmarsh analyzed general ordinary differential equations, on infinite intervals or with

other weakened hypotheses, and showed that the resolvents are not necessarily compact in that generality.
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We want to define K(x, y) to be a multiple of α(x) for x < y and a multiple of β(x) for x > y, so that

∆xK(x, y) = δx(y)

That is, let

K(x, y) =

 a(y) · α(x) (for x < y)

b(y) · β(x) (for x > y)

The requirement ∆xK(x, y) = δx is that the two curve fragments match at x = y, and that the slope
increases by 1 moving from one fragment to another:

a(y)α(y) = b(y)β(y) and a(y)α′(y) + 1 = b(y)β′(y) (for all y)

These two linear equations in two unknowns a(y), b(y) are readily solved: from the first,
b(y) = a(y)α(y)/β(y), and substituting into the second gives

aα′ + 1 =
aα

β
β′

so

a
(
α′ − αβ′

β

)
= −1

and

a =
−1

α′ − αβ′

β

=
−β

α′β − αβ′
and b =

aα

β
=

−α
α′β − αβ′

The denominator is the Wronskian W (α, β). Since

d

dy
W (α, β) = (α′β)′ − (αβ′)′ = α′′β + α′β′ − α′β′ − αβ′′ = (z2α)β − α(z2 · β) = 0

the Wronskian is constant, and it suffices to evaluate it at y = 0:

W (α, β)(0) = α′(0) · β(0)− α(0) · β′(0) = α′(0) · β(0)− 0 · β′(0) = α′(0) · β(0)

= z cosh(z · 0) · sinh z(0− 1) = −z sinh z

Thus, the Wronskian is non-vanishing for z 6∈ πiZ, and

a(y) =
−β

−z sinh z
=
− sinh z(y − 1)

−z sinh z
=

sinh z(y − 1)

z sinh z

b(y) =
−α

−z sinh z
=
− sinh zy

−z sinh z
=

sinh zy

z sinh z

Then

K(x, y) =

 a(y)α(x) (for x < y)

b(y)β(x) (for x > y)
=


−β(y)
W (α,β)α(x) (for x < y)

−α(y)
W (α,β)β(x) (for x > y)

=


sinh z(y − 1) · sinh zx

z sinh z
(for x < y)

sinh zy · sinh z(x− 1)

z sinh z
(for x > y)

The point is that for z 6∈ πiZ this is continuous on [0, 1]× [0, 1], so certainly L2 there. Thus, K(x, y) gives a
Hilbert-Schmidt operator, which is compact. That is, ∆ has compact resolvent on L2[0, 1].
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Indeed, the essential qualitative point K(x, y) ∈ Co([0, 1]× [0, 1]) does not need many of the details above.

[1.7] ∆-eigenvectors from resolvent eigenvectors The visible symmetry K(x, y) = K(y, x) implies
that K(x, y) gives a self-adjoint compact operator for K(x, y) real-valued. Thus, for 0 < z ∈ R, the operator
attached to each kernel K(x, y) = Kz(x, y) with 0 < z is compact and self-adjoint, so L2[0, 1] has an
orthonormal Hilbert-space basis of eigenvectors for each such operator.

Recall Hilbert’s argument that resolvents commute: for λ, µ ∈ C

(T − λ)−1 − (T − µ)−1 = (T − λ)−1
[
(T − µ)− (T − λ)

]
(T − µ)−1 = (T − λ)−1(λ− µ)(T − µ)−1

Also,

(T − λ)−1 − (T − µ)−1 = (T − µ)−1
[
(T − µ)− (T − λ)

]
(T − λ)−1 = (T − µ)−1(λ− µ)(T − λ)−1

However, what we really want is an assertion that eigenvectors for any one of the resolvents Kz(x, y) are
eigenvectors for T = ∆. To this end, we would like the domain of T to include the images of the resolvents.

This would require closed-ness of the properly-defined T , in the sense that its graph is a closed subset of
L2[0, 1]× L2[0, 1]. Unsurprisingly, taking ∆ to have domain consisting of smooth functions in L2[0, 1] is too
restrictive: we must take the (graph) closure T of ∆.

Applying (T − λ) to (T − λ)−1v = µ · v with λ, µ ∈ C gives

v = (T − λ)(T − λ)−1v = (T − λ)(µ · v) = µ · (T − λ)v = µTv − µλv

which gives the expected outcome

Tv =
( 1

µ
+ λ
)
· v

That is, eigenvectors for the resolvents are eigenvectors for (the closure of) the unbounded operator ∆. [9]

[1.8] Solving differential equations via spectral expansions Viewing Fourier series of L2[0, 1] functions
as expansions in terms of ∆-eigenvectors facilitates solution of differential equations. In effect, Fourier series
diagonalize the differential operator ∆.

For example, to solve (∆ − z2)u = f for u, write u and f in their Fourier expansions u =
∑
ξ û(ξ)ψξ and

f =
∑
ξ f̂(ξ)ψξ. The natural impulse is to attempt to differentiate termwise in the sum

u(x) =
∑
ξ

û(ξ)ψξ(x) (equality in an L2 sense)

Postponing justification of termwise differentiation to the discussion of Sobolev spaces just below,

(∆x − z2)u(x) = (∆x − z2)
∑
ξ

û(ξ)ψξ(x) =
∑
ξ

û(ξ) (∆x − z2)ψξ(x) =
∑
ξ

û(ξ) (−4π2ξ2 − z2)ψξ(x)

Fourier expansions are unique because the exponentials are an orthonormal basis, so

f̂(ξ) = (−4π2ξ2 − z2) û(ξ)

[9] In fact, ∆ is elliptic, so its eigenvectors are smooth, by elliptic regularity. However, compactness of the resolvent

is a stronger condition, assuring existence of a basis of eigenvectors. Not all elliptic operators have eigenvectors, as

of ∆ = d2/dx2 on L2(R) illustrates.
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and û(ξ) = f̂(ξ)/(−4π2ξ2 − z2), so

u =
∑
ξ

f̂(ξ)

−4π2ξ2 − z2
ψξ (equality in an L2 sense???)

The indicated division improves L2 convergence of the Fourier series, so f ∈ L2[0, 1] gives u ∈ L2[0, 1].
Interchange of differentiation and summation, and related convergence questions, are treated in the following
subsection.

[1.9] Introduction to Sobolev spaces on R/Z Since Fourier series are eigenfunction expansions for ∆,
we would imagine that for u =

∑
ξ cξ ψξ in L2[0, 1],

∆u = ∆
(∑

ξ

cξ ψξ

)
=
∑
ξ

(−4π2ξ2) · cξ ψξ

However, convergence has been weakened, and the image cannot be in L2[0, 1] for general u ∈ L2[0, 1].

Nevertheless, the resulting Fourier expansion has meaning, via Plancherel. It is not obvious, but these
questions motivate considering functions on [0, 1] as Z-periodic functions on R, or, equivalently, functions
on the circle S1 = R/Z. Thus, rather than C∞[0, 1] without comparison conditions on the endpoints, we
consider C∞(S1), smooth functions on [0, 1] whose values and derivatives’ values match at the endpoints.

With this notion of smoothness, integration by parts leaves no boundary terms, and

(du
dx

)̂
(ξ) =

∫ 1

0

e−2πiξx u′(x) dx = −
∫ 1

0

d

dx
e−2πiξx u(x) dx = 2πiξ

∫ 1

0

e−2πiξx u(x) dx = 2πiξ û(ξ)

Since all derivatives of smooth u are in L2[0, 1], by Riemann-Lebesgue applied to the derivatives, |ξ|n·û(ξ)→ 0
for all n. That is, Fourier coefficients of smooth functions (with endpoint matching) decrease rapidly, in the
sense of decreasing faster than any 1/|ξ|n.

In terms of decrease of Fourier coefficients, for s ≥ 0 the sth Sobolev space is

Hs(S1) = {u ∈ L2[0, 1] :
∑
ξ

(1 + |ξ|2)s · |û(ξ)|2 <∞}

It is immediate that Hs(S1) is the completion of C∞(S1) with respect to the sth Sobolev norm | ∗ |s given
by

|u|2s =
∑

(1 + |ξ|2)s · |û(ξ)|2

since the finite subsums are smooth.

Then, by design ∆ : C∞(S1)→ C∞(S1) is continuous when the source is given the Hs(S1) topology and the
target is given the Hs−2(S1) topology. Extend by continuity to a continuous map ∆ : Hs(S1)→ Hs−2(S1).

The normalization of the indexing scheme is remembered by observing that the degree-2 operator ∆ (or its
continuous extension) should map Hs(S1) to Hs−2(S1).

In this context, Fourier series with coefficients of polynomial growth, such as those which might arise by
applying ∆ to not-strongly-convergent Fourier series, have a natural meaning as continuous linear functionals
(maps to C) on positively-indexed Sobolev spaces, as follows.
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Specifically, define negatively-indexed Sobolev spaces H−s(S1) as spaces of distributions [10]

H−s(S1) = {distributions v :
∑
ξ

(1 + ξ2)−s |v(ψξ)|2 < ∞}

Write v̂(ξ) for v̂(ψξ). For u ∈ Hs(R) and v ∈ H−s(R) with s ≥ 0, there is the natural C-bilinear pairing

〈u, v〉Hs×H−s =
∑
ξ

û(ξ) · v̂(ξ)

A weighted version of Cauchy-Schwarz-Bunyakowsky proves convergence (and continuity of the pairing):

|〈u, v〉Hs×H−s | =
∣∣∣∑
ξ

û(ξ) · v̂(ξ)
∣∣∣ =

∣∣∣∑
ξ

(
û(ξ) · (1 + |ξ|2)s/2

)
·
(

(1 + |ξ|2)−s/2 · v̂(ξ)
)∣∣∣

≤
∑
ξ

(1 + |ξ|2)s · |û(ξ)|2 ·
∑
ξ

(1 + |ξ|2)−s · |v̂(ξ)|2 = |u|2s · |v|2−s

That is, Fourier series not in L2 give continuous linear functionals on subspaces of L2[0, 1] consisting of
Fourier series converging more strongly.

The above pairing is obviously an extension of the Plancherel pairing of L2[0, 1] = H0(S1) with itself.

[1.9.1] Remark: Thus, termwise differentiation is always justified, if interpreted as L2-differentiation, and
the resulting series converging in an appropriate Sobolev space. Connection to classical differentiability and
continuity are best made slightly indirectly, as follows.

[1.10] Sobolev’s lemma/imbedding It is natural to wonder whether functions u with sufficiently many
distributional derivatives in L2[0, 1] are differentiable in a classical sense.

Indeed, the differentiation ∆ : Hs(S1)→ Hs−2(S1) is an extension from the dense subspace C∞(S1), so the

relation to classical differentiability is not tautological. [11]

The natural Banach-space structure on Ck(S1) is given by [12]

|f |Ck = sup
0≤i≤k

sup
x∈S1

|f (i)(x)|

The claim is that, for u ∈ C∞(S1),

|f |Ck �s,k |f |Hs (for all s > k + 1
2 )

That is, Hs-limits of Fourier series also converge in Ck. We prove this for k = 0. That is, we show that
Hs(S1) ⊂ Co(S1) for all s > 1

2 .

[10] One definition of distributions on S1 is as the completion of C∞(S1) with respect to the weak *-topology, the

latter given by νu(v) =
∫
S1
u(x) v(x) dx for u ∈ C∞(S1). Equivalently, the space of distributions is the space of

continuous linear functionals on C∞(S1), with weak *-topology given by the same semi-norms, perhaps written

νu(v) = v(u). Various argument prove density of smooth functions in distributions (in the weak *-topology), which

proves that these two characterizations refer to the same things.

[11] When necessary for clarity, the differentiation ∆ : Hs(S1) → Hs−2(S1) obtained by extension by continuity in

those topologies is called L2-differentiation. It is compatible with distributional differentiation, but tracks different

topologies. Especially, the topology on the target Hs−2(S1) is much finer than the weak ∗-topology on distributions.

[12] There are some things to be checked here, to be sure that all the plausible features are genuine.
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The argument is by the same weighted version of Cauchy-Schwarz-Bunyakowsky as above:∣∣∣ sup
x

(∑
ξ

cξ ψξ(x)
)∣∣∣ ≤ sup

x

∑
ξ

|cξ| =
∑
ξ

|cξ| =
∑
ξ

(
|cξ| · (1 + |ξ|2)s/2

)
· 1

(1 + |ξ|2)s/2

≤
∑
ξ

|cξ|2 · (1 + |ξ|2)s ·
∑
ξ

1

(1 + |ξ|2)s
=

∣∣∣∑
ξ

cξ ψξ

∣∣∣2
Hs
·
∑
ξ

1

(1 + |ξ|2)s

For s > 1
2 the latter sum is convergent. Thus, suitable Sobolev norms dominate classical Ck norms related to

continuity and pointwise differentiability. This proves Sobolev’s inequality, also called Sobolev’s imbedding,
for functions on S1, that is, for periodic functions on R.

2. Plancherel for continuous spectral decompositions

The primary example in this section is Fourier transform, and differential operator ∆ = d2/dx2.

[2.1] Generalized eigenvectors Except for the happy cases of compact self-adjoint operators or operators
with compact resolvents, there is no reason to expect a basis of eigenvectors for a given operator T , continuous
or not.

For self-adjoint operators, there are standard spectral theorems decomposing the Hilbert space via projection-
valued measures. This and other general, abstract decompositions are reassuring, but insufficient.

The first important natural example of eigenvectors falling outside the given Hilbert space is in the action of
T = ∆ on [13] L2(R). The differential equation u′′ − z2u = 0 has solutions u(x) = e±zx. None of these is in
L2(R). That is, ∆ has no eigenvectors in L2(R). Nevertheless, Fourier inversion gives a tangible eigenvector
decomposition, as follows.

[2.2] Plancherel for Fourier transform, generalized eigenvectors Recall the Fourier transform

f̂(ξ) = Ff(ξ) =

∫
R
ψξ(x) f(x) dx (with ψξ(x) = e2πiξx)

These integrals converge nicely for f in the space S (R) of Schwartz [14] functions. When we know how to

justify [15] moving the differentiation under the integral,

d

dξ
f̂(ξ) =

d

dξ

∫
R
ψξ(x) f(x) dx =

∫
R

∂

∂ξ
ψξ(x) f(x) dx

=

∫
R

(−2πix)ψξ(x) f(x) dx = (−2πi)

∫
R
ψξ(x)xf(x) dx = (−2πi)x̂f(ξ)

Similarly, with an integration by parts,

−2πiξ · f̂(ξ) =

∫
R

∂

∂x
ψξ(x) · f(x) dx = −F

df

dx
(ξ)

[13] Although ∆ cannot be reasonably defined on all of L2(R), the style is to say that it acts on L2(R).

[14] As usual, the space of Schwartz functions consists of infinitely-differentiable functions all of whose derivatives are

of rapid decay, that is, decay more rapidly at ±∞ than every 1/|x|N .

[15] Interchange of this integration and differentiation is best understood via Gelfand-Pettis integrals.
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Then it is immediate that F maps S (R) to itself. The Plancherel theorem

|Ff | = |f | (L2(R) norm, for f ∈ S (R))

extends the Fourier transform to L2(R) by continuity, despite the general divergence of the literal integral.

[2.3] Fourier inversion Schwartz functions on R are superpositions of exponentials ψξ with ξ ∈ R, by
Fourier inversion:

f(x) =

∫
R
ψξ(x) f̂(ξ) dξ

The exponentials are eigenfunctions for ∆, but are not in L2(R). Thus, these exponentials are appropriate
generalized eigenfunctions for ∆ on L2(R), because, although not in L2(R), there are no ∆-eigenfunctions in
L2(R), and elements of L2(R) are superpositions of these eigenfunctions ψξ. Since the superposition is an

integral [16] this spectral decomposition is called continuous.

Fourier inversion is proven first for S (R). The natural idea, that unfortunately begs the question, is the
obvious: ∫

R
ψξ(x) f̂(ξ) dξ =

∫
R
ψξ(x)

(∫
R
ψξ(t) f(t) dt

)
dξ =

∫
R
f(t)

(∫
R
ψξ(x− t) dt

)
dt

If we could justify asserting that the inner integral is δx(t), which it is, then Fourier inversion follows.
However, Fourier inversion for S (R) is used to make sense of that inner integral in the first place.

Despite the impasse, the situation is encouraging. A dummy convergence factor will legitimize the idea. For
example, let g(x) = e−πx

2

be the usual Gaussian. Various computations show that it is its own Fourier
transform. For ε > 0, as ε→ 0+, the dilated Gaussian gε(x) = g(ε · x) approaches 1 uniformly on compacts.
Thus, ∫

R
ψξ(x) f̂(ξ) dξ =

∫
R

lim
ε→0+

g(εξ) ψξ(x) f̂(ξ) dξ = lim
ε→0+

∫
R
g(εξ) ψξ(x) f̂(ξ) dξ

by monotone convergence or more elementary reasons. Then the iterated integral is legitimately rearranged:∫
R
g(εξ) ψξ(x) f̂(ξ) dξ =

∫
R

∫
R
g(εξ) ψξ(x) ψξ(t) f(t) dt dξ =

∫
R

∫
R
g(εξ) ψξ(x− t) f(t) dξ dt

By changing variables in the definition of Fourier transform, ĝε = 1
εg1/ε. Thus,∫

R
ψξ(x) f̂(ξ) dξ =

∫
R

1

ε
g
(x− t

ε

)
f(t) dt =

∫
R

1

ε
g
( t
ε

)
· f(x+ t) dt

The sequence of function g1/ε/ε is not an approximate identity in the strictest sense, since the supports are
the entire line. Nevertheless, the integral of each is 1, and as ε → 0+, the mass is concentrated on smaller
and smaller neighborhoods of 0 ∈ R. Thus, for f ∈ S (R),

lim
ε→0+

∫
R

1

ε
g
( t
ε

)
· f(x+ t) dt = f(x)

This proves Fourier inversion∫
R
ψξ(x) f̂(ξ) dξ = f(x) (for f Schwartz)

[16] The measure in the integral for Fourier inversion has no atoms, so in various senses would be called continuous,

as opposed to discrete.
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In particular, this proves that Fourier transform bijects the Schwartz space to itself.

[2.4] Plancherel Since the exponentials are not in L2(R), the abstract, elementary Hilbert-space Plancherel
is essentially irrelevant here.

For f, g Schwartz, using Fourier inversion on Schwartz functions,

〈f̂ , ĝ〉 =

∫
R
f̂(ξ)

∫
R
ψξ(x) g(x) dx dξ =

∫
R
g(x)

∫
R
e2πixξ f̂(ξ) dξ dx =

∫
R
f(x) g(x) dx = 〈f, g〉

In particular, |f̂ |2 = |f |2.

Now the Fourier transform is extended to L2(R) → L2(R) by continuity, using the denseness of Schwartz
functions in L2(R).

Expression of f ∈ L2(R) by Fourier inversion is a spectral expansion or eigenfunction expansion in the sense
that it represents f as a superposition of generalized eigenfunctions for ∆. Non-convergence of the integrals
on L2(R) is only a minor hazard, since the Fourier transform on L2(R) is defined by extension (by continuity)
from the Schwartz space, where the integrals converge nicely.

[2.4.1] Remark: Even though the exponentials are not in L2(R), in the Plancherel formula they behave in
spirit as though they were an orthonormal basis.

[2.5] Solving differential equations via spectral expansions Given f ∈ L2(R), solve the equation
(∆− z2)u = f using the fact that Fourier transform and inversion diagonalize differentiation.

That is, replacing u, f by their spectral expansions,

(∆x − z2)

∫
R
û(ξ)ψξ(x) dξ =

∫
R
f̂(ξ)ψξ(x) dξ

We must move the differentiation inside the integral, and this is not trivially justifiable. Nevertheless, since
it is inescapable, we postpone worry, and proceed:∫

R
f̂(ξ)ψξ(x) dξ =

∫
R
û(ξ) (∆x − z2)ψξ(x) dξ =

∫
R
û(ξ) (−4π2ξ2 − z2)ψξ(x) dξ

Thus, it suffices to take

û(ξ) =
f̂(ξ)

−4π2ξ2 − z2

For z 6∈ iR, for f ∈ L2(R), the resulting û is in L2(R), although we do not know a priori that there
is u ∈ L2(R) producing û under Fourier transform. Indeed, by Fourier inversion, there is corresponding
u ∈ L2(R).

However, the integrals and their extensions describing Fourier transform and inversion only converge in an L2

sense. There is no guarantee that the function u will be twice-differentiable in the classical pointwise sense.
For this and other reasons, the sense of differentiation in the apparent application of ∆ under the integral
cannot be the classical pointwise sense. Rather, it is an extended sense, reasonably called L2 differentiation,
and best described in terms of Sobolev spaces, just below.

[2.6] Riemann-Lebesgue lemma The Riemann-Lebesgue lemma assertion that Fourier coefficients of
functions on L2(S1) go to 0 is an easy corollary of Plancherel in that case. In contrast, it is not the case
that functions in L2(R) go to 0 pointwise, so it is not true that Fourier transforms of functions in L2(R) go
to 0 at infinity. Of course, Fourier transforms of Schwartz functions are Schwartz, so go to 0.

10
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A non-trivial, useful Riemann-Lebesgue lemma here is that for u ∈ L1(R), the Fourier transform û does go
to 0 at infinity. Note that the integral defining Fourier transform does converge for u ∈ L1(R), although
some meanings will be lost since L1(R) is not contained in L2(R).

By the definition of Lebesgue integral, and by Urysohn’s lemma, finite linear combinations of characteristic
functions of finite intervals are dense in L1(R). With u the characteristic function of a finite interval [a, b],

û(ξ) =

∫ b

a

ψξ(x) dx =
e−2πiξb − e−2πiξa

−2πiξ

Thus, for a finite linear combination u of characteristic functions of intervals, |û| � 1/(1 + |ξ|). Given
v ∈ L1(R), let u be a finite linear combination of characteristic functions of intervals such that |u− v|L1 < ε.
Then

|û(ξ)− v̂(ξ)| =
∣∣∣ ∫

R
ψξ(x)u(x) dx −

∫
R
ψξ(x) v(x) dx

∣∣∣ ≤ ∫
R
|u(x)− v(x)| dx < ε

Since |û| � 1/(1 + |ξ|), for large |ξ| the absolute value |v̂(ξ)| is at most 2ε. This is true for every ε > 0, so v̂
goes to 0 at infinity. ///

[2.7] Introduction to Sobolev spaces on R Since Fourier inversion gives eigenfunction expansions for
∆, we would imagine that for u =

∫
R c(ξ)ψξ in L2(R),

∆u = ∆
(∫

R
c(ξ)ψξ dξ

)
=

∫
R

(−4π2ξ2) · cξ ψξ dξ

However, convergence has been weakened, and the image cannot be in L2(R) for general u ∈ L2(R).
Nevertheless, the resulting expansion has meaning, via Plancherel, as follows.

In terms of decrease of Fourier coefficients, the sth Sobolev space is

Hs(R) = {u ∈ L2(R) :

∫
R

(1 + |ξ|2)s · |û(ξ)|2 dξ <∞}

It is almost immediate that Hs(R) is the completion of S (R) or of C∞c (R) with respect to the sth Sobolev
norm | ∗ |s given by

|u|2s =

∫
R

(1 + |ξ|2)s · |û(ξ)|2 dξ

Then, by design ∆ : C∞c (R) → C∞c (R) is continuous when the source is given the Hs(R) topology and the
target is given the Hs−2(R) topology. Extend by continuity to a continuous map ∆ : Hs(R)→ Hs−2(R).

In this context, expressions u(x) =
∫
R c(ξ)ψξ(x) dξ with coefficients c(ξ) of polynomial growth, such as

those which might arise by applying ∆ to not-strongly-convergent Fourier inversion integrals, have a natural
meaning as continuous linear functionals (maps to C) on positively-indexed Sobolev spaces, as follows.

Specifically, negatively-indexed Sobolev spaces H−s(R) are spaces of tempered distributions [17]

H−s(R) = {tempered distributions v :

∫
R

(1 + ξ2)−s |v(ψξ)|2 < ∞}

[17] As usual, the distributions on R are the completion of C∞c (R) with respect to the weak *-topology given by

semi-norms νu(v) =
∫
R u(x) v(x) dx for u ∈ C∞c (R). Another characterization is that distributions are continuous

linear functionals on C∞c (R). The equivalence follows from the readily-provable density of C∞c (R) in its dual.

Tempered distributions are those that extend to continuous functionals on Schwartz functions. These are exactly the

distributions admitting a sensible Fourier transform.
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Write v̂(ξ) for v̂(ψξ). For example, compactly supported distributions are in H−∞(R) =
⋃
sH

s(R).

For u ∈ Hs(R) and v ∈ H−s(R) with s ≥ 0, there is the natural C-bilinear pairing

〈u, v〉Hs×H−s =

∫
R
û(ξ) · v̂(ξ) dξ

A weighted version of Cauchy-Schwarz-Bunyakowsky proves convergence (and continuity of the pairing):

|〈u, v〉Hs×H−s | =
∣∣∣ ∫

R
û(ξ) · v̂(ξ) dξ

∣∣∣ =
∣∣∣ ∫

R

(
û(ξ) · (1 + |ξ|2)s/2

)
·
(

(1 + |ξ|2)−s/2 · v̂(ξ)
)
dξ
∣∣∣

≤
∫
R

(1 + |ξ|2)s · |û(ξ)|2 dξ ·
∫
R

(1 + |ξ|2)−s · |v̂(ξ)|2 dξ = |u|2s · |v|2−s

That is, Fourier integrals not in L2 can give continuous linear functionals on subspaces of L2(R) consisting
of Fourier integrals converging more strongly.

The above pairing is obviously an extension of the Plancherel pairing of L2(R) = H0(R) with itself.

[2.7.1] Remark: Thus, differentiation inside a Fourier integral is always justified, if interpreted as L2-
differentiation, and the resulting integral converging in an appropriate Sobolev space. Connection to classical
differentiability and continuity are best made slightly indirectly, as follows.

[2.8] Sobolev inequality/imbedding It is natural to wonder whether functions u with sufficiently many
extended-notion derivatives in L2(R) are differentiable in a classical sense. As with Fourier series, the
differentiation ∆ : Hs(R) → Hs−2(R) is an extension from the dense subspace C∞c (R), so the relation to

classical differentiability is not tautological. [18]

In contrast to the natural Banach spaces Ck(S1), it is less clear which topological vector spaces of k-times
classically differentiable functions on R should be compared to Sobolev spaces. There is more than a single
viable option. A natural choice might appear to be spaces Ckbdd(R) of k-times continuously differentiable
functions bounded on R, and whose derivatives up through the kth are bounded. These are Banach spaces,
with norms

|f |Ck = sup
0≤i≤k

sup
x∈R
|f (i)(x)|

It is straightforward to prove that Cobdd(R) is complete in the Co-norm, so truly is a Banach space. The
argument for k > 0 is only slightly more complicated. However, as expanded-upon below, these spaces have
some pathologies. Thus, instead, take

Cko (R) = closure of C∞o (R) with respect to | ∗ |Ck

= {k-times continuously differentiable functions whose derivatives go to 0 at infinity}

The Sobolev inequality is that

|f |Ck
o
�s,k |f |Hs (for all s > k + 1

2 , for f ∈ Cko (R))

That is, Hs(R) ⊂ Cko (R) is a continuous map.

The simple case k = 0 illustrates the mechanism. The weighted version of Cauchy-Schwarz-Bunyakowsky
gives

[18] In fact, here the L2 extension of differentiation includes a finer topology on the target spaces Hs−2(R) than the

restriction of the usual weak ∗-topology on tempered distributions.
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∣∣∣ sup
x∈R

(∫
R
c(ξ)ψξ(x) dξ

)∣∣∣ ≤ sup
x

∫
R
|c(ξ)| dξ =

∫
R
|c(ξ)| dξ =

∫
R

(
|c(ξ)| · (1 + |ξ|2)s/2

)
· 1

(1 + |ξ|2)s/2
dξ

≤
∫
R
|c(ξ)|2 · (1 + |ξ|2)s dξ ·

∫
R

dξ

(1 + |ξ|2)s
=

∣∣∣ ∫
R
c(ξ)ψξ dξ

∣∣∣2
Hs
·
∫
R

dξ

(1 + |ξ|2)s

For s > 1
2 the latter integral is convergent. Thus, suitable Sobolev norms dominate the Cko (R) norms, proving

Sobolev’s inequality, also called Sobolev’s imbedding, for functions on R.

[2.8.1] Remark: The same argument applies to the spaces Ckbdd(R). However, the latter have pathologies
fatally obstructing some reasonable goals. The issue is already clear for k = 0, with the point that not all
bounded continuous functions are uniformly continuous, for example, u(x) = sin(x2). Thus, the natural map
R× Cobdd(R)→ Cobdd(R) by translation

y × f −→ x→ f(x+ y) (for x, y ∈ R and f ∈ Cobdd(R))

is not continuous. That is, Ckbdd(R) is not a representation space for the natural translation action of R. The
obstacle, that bounded continuous functions on R need not be uniformly continuous, is not itself a pathology.
However, natural spaces of functions should be representation spaces. Thus, the conclusion is that the spaces
Ckbdd(R) are not what we want.

3. Appendix: compact self-adjoint operators on Hilbert spaces

[3.0.1] Proposition: A continuous self-adjoint operator T on a Hilbert space V has operator norm
|T | = sup|v|≤1 |Tv| expressible as

|T | = sup
|v|≤1

|〈Tv, v〉|

Proof: On one hand, certainly |〈Tv, v〉| ≤ |Tv| · |v|, giving the easy direction of inequality.

On the other hand, let σ = sup|v|≤1 |〈Tv, v〉|. A polarization identity gives

2〈Tv,w〉+ 2〈Tw, v〉 = 〈T (v + w), v + w〉 − 〈T (v − w), v − w〉

With w = t · Tv with t > 0, since T = T ∗, both 〈Tv,w〉 and 〈Tw, v〉 are non-negative real. Taking absolute
values,

4〈Tv, t · Tv〉 =
∣∣∣〈T (v + t · Tv), v + t · Tv〉 − 〈T (v − t · Tv), v − t · Tv〉

∣∣∣
≤ σ · |v + t · Tv|2 + σ · |v − t · Tv|2 = 2σ ·

(
|v|2 + t2 · |Tv|2)

Divide through by 4t and set t = |v|/|Tv| to minimize the right-hand side, obtaining

|Tv|2 ≤ σ · |v| · |Tv|

giving the other inequality. ///

Recall that a continuous linear operator T : V → V is compact when the image of the unit ball by T has
compact closure.

[3.0.2] Theorem: A compact self-adjoint operator T has largest eigenvalue ±|T |, and an orthonormal basis
of eigenfunctions. The number of eigenvalues λ larger than a given constant c > 0 is finite. In particular,
multiplicities are finite.
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Proof: Suppose |T | > 0. Using the re-characterization of operator norm, let vi be a sequence of unit vectors
such that |〈Tvi, vi〉| → |T |. That is, the limit points of 〈Tvi, vi〉 are ±|T |. Replace vi by a subsequence so
that 〈Tvi, vi〉 → λ with λ one of ±|T |. On one hand, using 〈Tv, v〉 = 〈v, Tv〉 = 〈Tv, v〉,

0 ≤ |Tvi − λvi|2 = |Tvi|2 − 2λ〈Tvi, vi〉+ λ2|vi|2 ≤ λ2 − 2λ〈Tvi, vi〉+ λ2

By assumption, the right-hand side goes to 0. Using compactness, replace vi with a subsequence such that
Tvi has limit w. Then the inequality shows that λvi → w, so vi → λ−1w. Thus, by continuity of T ,
Tw = λw.

The other assertions follow by the short natural arguments. ///

Notes

Much of the above is completely standard, and widely known for more than 100 years. Thus, much of it
appears everywhere, in standard texts as well as on-line. E.g., for basic material, including spectral theory
of compact operators, see course notes at http://www.math.umn.edu/∼garrett/m/fun/

Eigenvalue problems in infinite-dimensional spaces, especially in Hilbert spaces, were considered prior to 1900
by Fredholm, Volterra, Hilbert, and others. Their context was usually integral equations, to which many
differential equations were converted, to benefit from the greater tractability of the integral equations. The
significance of the notion of compact or completely continuous operator for spectral theory was recognized.

Ideas about Fourier series are 200 years old, and due to several people. For technical reasons visible in the
above discussion, common use of Fourier transforms is more recent, perhaps systematized only by Wiener
and Bochner in the early 20th century.

Although differential operators are natural unbounded operators on Hilbert spaces, apparently the strongest
motivation to discuss them in that context arose mostly from quantum physics, since the literal solution
of differential equations admitted other options. Stone and von Neumann proved existence of self-adjoint
extensions of arbitrary symmetric operators, but these extensions used the Axiom of Choice, and could not
be characterized usefully. In contrast, Friedrichs’ effective and explicit construction of a self-adjoint extension
of semi-bounded symmetric operators allows computations.

Already in the late 19th century ideas about energy estimates led to use of modified inner products resembling
Sobolev’s constructions from the 1930s.

Although Bochner and others had thoroughly studied Fourier integrals in the early 20th century, Schwartz’
systematic development of notions of distribution and tempered distribution in the late 1940s gave a useful
stability to the ideas, making clear that there was more to it than a bag of tricks for regularizing integrals.

Gelfand’s and Pettis’ notion of weak integral exactly dispatches many otherwise-awkward basic analytical
problems, such as differentiation in an integral with respect to a parameter. Nevertheless, that notion of
integral is under-appreciated: the tradition of Riemann integrals seems to cause strong integrals (such as
Bochner’s) to be favored, for no compelling technical reason.
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