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Many familiar and useful spaces of continuous or differentiable functions, such as Ck[a, b], have natural metric
structures, and are complete. Often, the metric d(, ) comes from a norm || · ||, on the functions, meaning that

d(f, g) = ||f − g||

where the norm itself has
||f || ≥ 0, with ||f || = 0 only for f = 0 (positivity)

||f + g|| ≤ ||f ||+ ||g|| (triangle inequality)

||α · f || = |α| · ||f || for α ∈ C (homogeneity)

A vector space with complete metric coming from a norm is a Banach space. Natural Banach spaces of
functions are many of the most natural function spaces.

Other natural function spaces, such as C∞[a, b] and Co(R), are not Banach, but still have a metric topology

and are complete: these are Fréchet spaces, appearing as limits [1] of Banach spaces. These lack some of the
conveniences of Banach spaces, but their expressions as limits of Banach spaces is often sufficient.

Other important spaces, such as compactly-supported continuous functions Coc (R) on R, or compactly-
supported smooth functions C∞c (R) on R, are not reasonably metrizable at all. Some of these important

spaces are expressible as colimits [2] of Banach or Fréchet spaces, and such descriptions suffice for many
applications.

First, we look at some naturally occurring Banach and Fréchet spaces. Our main point will be to prove
completeness with the natural metrics.

All vector spaces are over the complex numbers C, or possibly over the real numbers R, but usually this will
not matter.

• Function spaces Ck[a, b]
• Function spaces Lp

• Normed spaces, Banach spaces
• Non-Banach C∞[a, b] as limit of Banach spaces Ck[a, b]
• Non-Banach Co(R) as limit of Banach spaces Co[−N,N ]
• Fréchet spaces abstractly

1. Function spaces Ck[a, b]

Our first examples involve continuous and continuously differentiable functions, Co(K) and Ck[a, b]. The
second sort involves measurable functions with integral conditions, the spaces Lp(X,µ).

In the case of the natural function spaces, the immediate goal is to give the vector space of functions a metric
(if possible) which makes it complete, so that we can take limits and be sure to stay in the same class of
functions. For example, pointwise limits of continuous functions can easily fail to be continuous.

[1] Examples and ideas about (projective) limits are discussed below.

[2] Examples and ideas about colimits, formerly known as inductive limits are discussed carefully below.
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[1.0.1] Theorem: The set Co(K) of (complex-valued) continuous functions on a compact set K is complete

when given the metric [3]

d(f, g) = |f − g|

where | | is the norm
|f |∞ = |f |Co = sup

x∈K
|f(x)|

Proof: This is a typical three-epsilon argument. The point is completeness, namely that a Cauchy sequence
of continuous functions has a pointwise limit which is a continuous function. First we observe that a Cauchy
sequence fi has a pointwise limit. Given ε > 0, choose N large enough such that for i, j ≥ N we have
|fi − fj | < ε. Then |fi(x) − fj(x)| < ε for any x in K. Thus, the sequence of values fi(x) is a Cauchy
sequence of complex numbers, so has a limit f(x). Further, given ε′ > 0 choose j ≥ N sufficiently large such
that |fj(x)− f(x)| < ε′. Then for i ≥ N

|fi(x)− f(x)| ≤ |fi(x)− fj(x)|+ |fj(x)− f(x)| < ε+ ε′

Since this is true for every positive ε′ we have

|fi(x)− f(x)| ≤ ε

for every x in K. (That is, the pointwise limit is approached uniformly in x.)

Now we prove that f(x) is continuous. Given ε > 0, let N be large enough so that for i, j ≥ N we have
|fi − fj | < ε. From the previous paragraph

|fi(x)− f(x)| ≤ ε

for every x and for i ≥ N . Fix i ≥ N and x ∈ K, and choose a small enough neigborhood U of x such that
|fi(x)− fi(y)| < ε for any y in U . Then

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |f(y)− fi(y)| ≤ ε+ |fi(x)− fi(y)|+ ε < ε+ ε+ ε

Thus, the pointwise limit f is continuous at every x in U . ///

As usual, a real-valued or complex-valued function f on a closed interval [a, b] ⊂ R is continuously
differentiable if it has a derivative which is itself a continuous function. That is, the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists for all x ∈ [a, b], and the function f ′(x) is in Co[a, b]. Let Ck[a, b] be the collection of k-times
continuously differentiable functions on [a, b], with the Ck-norm

|f |Ck =
∑

0≤i≤k

sup
x∈[a,b]

|f (i)(x)| =
∑

0≤i≤k

|f (i)|∞

where f (i) is the ith derivative of f . The associated metric on Ck[a, b] is

d(f, g) = |f − g|Ck

[3] There is no obligation to denote a norm on functions by double bars, if context adequately distinguishes a norm

on functions from the usual norm on scalars.
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[1.0.2] Theorem: The metric space Ck[a, b] is complete.

Proof: The case k = 1 already illustrates the key point. As in the case of Co just above, for a Cauchy
sequence fn in C1[a, b] the pointwise limits

f(x) = lim
n
fn(x) g(x) = lim

n
f ′n(x)

exist, are approached uniformly in x, and are continuous functions. We must show that f is continuously
differentiable by showing that g = f ′.

By the fundamental theorem of calculus, for any index i, since fi is continuous, [4]

fi(x)− fi(a) =

∫ x

a

f ′i(t) dt

By an easy form of the Dominated Convergence Theorem [5]

lim
i

∫ x

a

f ′i(t) dt =

∫ x

a

lim
i
f ′i(t) dt =

∫ x

a

g(t) dt

Thus

f(x)− f(a) =

∫ x

a

g(t) dt

from which f ′ = g. ///

2. Function spaces Lp

The Lp function spaces are perhaps less interesting than the spaces Ck[a, b], but have some technical
advantages.

For 1 ≤ p <∞, on a measure space [6] (X,µ) with positive measure µ we have the usual Lp spaces

Lp(X,µ) = {measurable f : |f |p <∞} modulo ∼

with the usual Lp norm

|f |p =

(∫
X

|f |p dµ
)1/p

and associated metric
d(f, g) = |f − g|p

taking the quotient by the equivalence relation

f ∼ g if f − g = 0 off a set of measure 0

[4] This invocation of the fundamental theorem of calculus for integrals of continuous functions needs only the very

simplest notion of an integral.

[5] It may seem to be overkill to invoke the Dominated Convergence Theorem in this context, but attention to such

details helps us avoid many of the gaffes of early 19th-century analysis.

[6] The space X on which the measure and the functions live need not be a topological space, and the measure µ

need have no connection with continuity, for this to make sense.
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In the special case that X = {1, 2, 3, . . .} with counting measure µ, the Lp-space is denoted

`p = {complex sequences {ci} with

(∑
i

|ci|p
)1/p

<∞}

[2.0.1] Remark: These Lp functions have ambiguous pointwise values, in conflict with the naive formal
definition of function.

[2.0.2] Theorem: The spaces Lp(X,µ) are complete metric spaces.

[2.0.3] Remark: In fact, as used in the proof, a Cauchy sequence fi in Lp(X,µ) has a subsequence converging
pointwise off a set of measure 0 in X.

Proof: The triangle inequality here is Minkowski’s inequality. To prove completeness, choose a subsequence
fni

such that
|fni
− fni+1

|p < 2−i

and put

gn(x) =
∑

1≤i≤n

|fni+1
(x)− fni

(x)|

and
g(x) =

∑
1≤i<∞

|fni+1
(x)− fni

(x)|

The infinite sum is not necessarily claimed to converge to a finite value for every x. The triangle inequality
shows that |gn|p ≤ 1. Fatou’s Lemma (itself following from Lebesgue’s Monotone Convergence Theorem)
asserts that for [0,∞]-valued measurable functions hi∫

X

(
lim inf

i
hi

)
≤ lim inf

i

∫
X

hi

Thus, |g|p ≤ 1, so is finite. Thus,

fn1(x) +
∑
i≥1

(fni+1(x)− fni(x))

converges for almost all x ∈ X. Let f(x) be the sum at points x where the series converges, and on the
measure-zero set where the series does not converge put f(x) = 0. Certainly

f(x) = lim
i
fni

(x) (for almost all x)

Now prove that this almost-everywhere pointwise limit is the Lp-limit of the original sequence. For ε > 0
take N such that |fm − fn|p < ε for m,n ≥ N . Fatou’s lemma gives∫

|f − fn|p ≤ lim inf
i

∫
|fni − fn|p ≤ εp

Thus f − fn is in Lp and hence f is in Lp. And |f − fn|p → 0. ///

Of course we are often interested in situations where a measure does have a connection with a topology.

[2.0.4] Theorem: For a locally compact Hausdorff topological space X with positive regular Borel measure
[7] µ, the space Coc (X) of compactly-supported continuous functions is dense in Lp(X,µ).

[7] Recall: a measure is Borel if open and closed sets are measurable. A measure is regular if the measure of a

(measurable) set is the inf of the measures of the open sets containing it, and is the sup of the measures of the

compacts contained in it.
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Proof: From the definition of integral attached to a measure, an Lp function is approximable in Lp metric
by a simple function, that is, a measurable function assuming only finitely-many values. That is, a simple
function is a finite linear combination of characteristic functions of measurable sets E. Thus, it suffices to
approximate characteristic functions of measurable sets by continuous functions. The assumed regularity of
the measure gives compact K and open U such that K ⊂ E ⊂ U and µ(U−E) < ε, for given ε > 0. Urysohn’s
lemma says that there is continuous f identically 1 on K and identically 0 off U . Thus, f approximates the
characteristic function of E. ///

[2.0.5] Corollary: For locally compact Hausdorff X with regular Borel measure µ, Lp(X,µ) is the Lp-metric
completion of Coc (X), the compactly-supported continuous functions. ///

[2.0.6] Remark: Defining Lp(X,µ) to be the Lp completion of Coc (X) avoids discussion of ambiguous values
on sets of measure zero.

3. Normed spaces, Banach spaces

We define an abstract family of vector spaces with metric topologies, including the standard examples above,
namely normed spaces. Complete normed spaces are Banach spaces.

A normed space or pre-Banach is a vector space V with a non-negative real-valued function | | (the norm)
on it with properties

(Positivity) |v| ≥ 0 and |v| = 0 only for v = 0

(Homogeneity) |c · v| = |c| · |v| for c ∈ C and v ∈ V , with usual complex absolute value |c|

(Triangle inequality) For v, w ∈ V , |v + w| ≤ |v|+ |w|

For V with norm | |, there is a natural metric

d(v, w) = |v − w|

The positivity of the norm assures that d(v, w) = 0 implies v = w. The homogeneity implies symmetry of
the metric:

d(v, w) = |v − w| = | − (v − w)| = |w − v| = d(w, v)

The triangle inequality for the norm implies the triangle inequality for the metric:

d(x, z) = |x− z| = |(x− y) + (y − z)| ≤ |x− y|+ |y − z| = d(x, y) + d(y, z)

Further, because of the way it’s defined, such a metric is translation-invariant meaning that

d(x, y) = d(x+ z, y + z) (translation invariance)

A normed space V complete for the associated metric is a Banach space.

Many of the standard examples of naturally normed spaces are complete, though this may require proof.
Two important examples already noted areCo(X), with sup norm, is a Banach space, for compact X

Ck[a, b], with Ck-norm, is a Banach space, for −∞ < a < b < +∞

[3.0.1] Remark: When the norm on a Banach space comes from a positive-definite hermitian inner product

〈, 〉, meaning that |f | = 〈f, f〉 12 , the space is called a Hilbert space. The inner product gives a very useful
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geometry that is not available in general Banach spaces. Absence of this geometry in Banach spaces is often a
problem. Unfortunately, few natural function spaces are Hilbert space. Nevertheless, for example, the family
of Banach spaces Ck[a, b] can be systematically compared to a family of Hilbert spaces, the Levi-Sobolev
spaces discussed a bit later.

4. Non-Banach C∞[a, b] as limit of Banach spaces Ck[a, b]

The space C∞[a, b] of infinitely differentiable complex-valued functions on a (finite) interval [a, b] in R is not
a Banach space.

Nevertheless, we will see that the topology is completely determined by its relation to the Banach spaces
Ck[a, b]. That is, there is a unique reasonable topology on C∞[a, b]. After proving this uniqueness, we also
show that this topology is complete metric, although not arising from a norm.

It is useful to observe that this function space can be presented as

C∞[a, b] =
⋂
k≥0

Ck[a, b]

A linear map from another vector space Z to C∞[a, b] certainly gives a map to each Ck[a, b] by composing
with the inclusion C∞[a, b] → Ck[a, b]. Conversely, given a family of continuous linear maps Z → Ck[a, b]
from a topological vector space Z compatible in the sense of giving commutative diagrams

Ck[a, b]
⊂ // Ck−1[a, b]

Z

ffMMMMMMMMMMM

OO

this says that the image of Z actually lies in the intersection C∞[a, b]. Thus, diagrammatically, for every
family of compatible maps Z → Ck[a, b], there is a unique Z → C∞[a, b] fitting into a commutative diagram

C∞[a, b]
** ((

. . . // C1[a, b] // Co[a, b]

Z

;;w
w

w
w

w

∀
44jjjjjjjjjj

∃!

cc

[4.0.1] Theorem: Up to unique isomorphism, there exists at most one topology on C∞[a, b] such that to
every compatible family of continuous linear maps Z → Ck[a, b] from a topological vector space Z there is
a unique continuous linear Z → C∞[a, b] fitting into a commutative diagram as just above.

[4.0.2] Remark: For the moment, a topological vector space is just a (real or complex) vector space with
a Hausdorff topology such that vector addition and scalar multiplication are continuous. This includes
anything we’ll need. But then this uniqueness proof needs amplification for us to see what kind of topology
we have.

Proof: Let X,Y be C∞[a, b] with two topologies fitting into such diagrams, and show X ≈ Y (and with
unique isomorphism). First, claim that the identity map idX : X → X is the only map ϕ : X → X fitting
into a commutative diagram
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Paul Garrett: Banach and Fréchet spaces of functions (March 15, 2014)

X
** ''

. . . // C1[a, b] // Co[a, b]

X

ϕ

OO

44 77
. . . // C1[a, b] // Co[a, b]

Indeed, given a compatible family of maps X → Ck[a, b], there is unique ϕ fitting into

X
** ''

. . . // C1[a, b] // Co[a, b]

X

;;w
w

w
w

w

∀
44jjjjjjjjjj

ϕ

``

Since the identity map idX fits, necessarily ϕ = idX . Similarly, given the compatible family of inclusions
Y → Ck[a, b], there is unique f : Y → X fitting into

X
** ''

. . . // C1[a, b] // Co[a, b]

Y

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
f

``

Similarly, given the compatible family of inclusions X → Ck[a, b], there is unique g : X → Y fitting into

Y
** ''

. . . // C1[a, b] // Co[a, b]

X

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
g

__

Then f ◦ g : X → X fits into a diagram

X
** ''

. . . // C1[a, b] // Co[a, b]

X

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
f◦g

``

Therefore, f ◦ g = idX . Similarly, g ◦ f = idY . That is, f, g are mutual inverses, so are isomorphisms of
topological vector spaces. ///

Now we prove existence of the topology on C∞[a, b] by a construction. The construction provides some
further information, as well.

[4.0.3] Theorem: Let

µk(f) = sup
0≤i≤k

sup
x∈[a,b]

|f (i)(x)|

be the Ck[a, b]-norm. With the metric

d(f, g) =

∞∑
k=0

2−k
µk(f − g)

µk(f − g) + 1

C∞[a, b] is complete.
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Proof: A Cauchy sequence fi in C∞[a, b] is also a Cauchy sequence in the Banach space Ck[a, b] for every
k. Thus, as we saw earlier, the sequence of restrictions converges in Ck[a, b] to a Ck function on [a, b], for
every k, and the limit of the derivatives is the corresponding derivative of the limit. ///

[4.0.4] Remark: The particular formula combining all the Ck-metrics can be replaced by many equivalent
variants. It is not canonical.

[4.0.5] Remark: The product of any countable collection of metric spaces Xi, di has a metric given by
similar formulas:

d({xk}, {yk}) =

∞∑
k=0

2−k
dk(xk, yk)

dk(xk, yk) + 1

Further, if all the Xi’s are complete, the product is complete.

[4.1] Limits of Banach spaces

Abstracting the above, let

. . .
ϕ2 // B1

ϕ1 // Bo

be a countable family of Banach spaces with continuous linear maps as indicated. We do not require the
continuous linear maps to be injective.

A (projective) limit limiBi of the Banach spaces Bi is a topological vector space and continuous linear maps
limiBi → Bj such that, for every compatible family of continuous linear maps Z → Bi there is unique
continuous linear Z → limiBi fitting into

limiBi
!!   

. . .
ϕ2 // B1

ϕ1 // Bo

Z

==|
|

|
|

66mmmmmmmm

cc

The same uniqueness proof as above shows that there is at most one topological vector space limiBi. For
existence by construction, the earlier argument needs minor extension, as follows. The product P =

∏
iBi of

the Bi is complete metrizable, though with no single canonical metric. Let πi : P → Bi be the ith projection.
Let

X = {{bi ∈ Bi} ∈ P : ϕ`(b`) = b`−1, for all `}

be the subset of the product consisting of compatible sequences of elements bi. These are closed conditions,
so X is a closed subset of the product P . By design, the restriction of πi : P → Bi to πi : X → Bi satisfies
the requirement

ϕ`(π`{bi}) = π`−1({bi}) (for {bi} ∈ X)

Given any family f` : Z → B`, the product
∏
` f` maps Z → P . The condition of compatibility on f` is

exactly that
∏
` f` has image inside X ⊂ P . In that case, by design, we have a commutative diagram

X

π1

((

πo

$$
. . .

ϕ2 // B1
ϕ1 // Bo

Z

f1
==|

|
|

|

fo

66mmmmmmmm
∏
f`

``

That is, we have proven existence of countable limits of Banach spaces by giving a construction.

[4.2] Local convexity
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Before declaring C∞[a, b] to be a Fréchet space, a further technical point must be addressed. A Fréchet
space is a topological vector space complete metric with respect to a it translation-invariant metric d(, ).
The translation-invariance means

d(f + h, g + h) = d(f, g)

All the metrics above have this property. Further, Fréchet spaces are required to be locally convex, that is,
at every point there is a local basis of convex opens.

For translation-invariant metric, as we will always presume, it suffices to show that 0 has a local basis of
convex opens.

Normed spaces are immediately locally convex, because open balls are locally convex, and it suffices: for
0 ≤ t ≤ 1 and x, y in the ε-ball at 0 in a normed space,

|tx+ (1− t)y| ≤ |tx|+ |(1− t)y| ≤ t|x|+ (1− t)|y| < t · ε+ (1− t) · ε = ε

Translation-invariant metrics made as above from countable collections of metrics attached to norms are
immediately locally convex. Thus, countable limits of Banach spaces are locally convex, hence, are Fréchet.

[4.2.1] Remark: All the spaces we will care about are locally convex for simple reasons, so demonstrating
local convexity is rarely an interesting issue. Nevertheless, there are complete-metric topological vectorspaces
which fail to be locally convex. The sequence space

`p = {x = (x1, x2, . . .) :
∑
i

|xi|p <∞}

for 0 < p < 1 with metric

d(x, y) =
∑
i

|xi − yi|p (note: no pth root, unlike the p ≥ 1 case)

Even this example is of greatest interest merely as a counterexample to a naive presumption that local
convexity is automatic.

5. Non-Banach function spaces Co(R)
For a non-compact topological space such as R, the space Co(R) of continuous functions is not a Banach
space, if for no other reason than that the sup of the absolute value of a continuous function may be +∞.

But, Co(X) has a complete metric structure under some mild hypotheses on X: suppose that X is a countable

union of compact subsets Ki, where Ki+1 contains Ki in its interior. [8]

We have semi-norms
sup
x∈Ki

|f(x)|

These are called semi-norms rather than norms since they are not necessarily strictly positive for non-zero
f , although they are homogeneous and satisfy the triangle inequality.

The completion Bi of Co(X) with respect to supKi
entails collapsing, since supKi

is only a semi-norm.

Nevertheless, the completion of Co(X) with respect to supKi
is a Banach space contained in Co(Ki).

[9]

[8] If we invoke the Baire Category Theorem, then we can more simply require that X be locally compact, Hausdorff,

and be a countable union of compacts. (The last condition is σ-compactness.) Then it follows that, for given x ∈ X,

there is some Ki containing a neighborhood of x.

[9] In fact, in tangible examples such as Ki = [−i, i] ⊂ R, it is easy to see that we have equality Bi = Co(Ki) rather

than mere containment. In the example Ki = [−i, i] ⊂ R, every continuous function on the compact is a restriction

of a continuous function on the larger space. However, the argument here does not depend on this.
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Despite the fact that the map Co(X)→ Bi ⊂ Co(Ki) need not be injective, we claim that giving Co(X) the
limit topology limi C

o(Ki) is reasonable.

Certainly the restriction map Co(X) → C(Ki) should be continuous, as should all the restrictions
Co(Ki)→ Co(Ki−1), whether or not these are surjective.

Here, the non-formal argument in favor of giving Co(X) the limit topology is that a compatible family of
maps fi : Z → Co(Ki) amounts to giving compatible fragments of functions F on X. That is, for z ∈ Z,
given x ∈ X take Ki such that x is in the interior of Ki. Then for all j ≥ i the function x → fj(z)(x) is
continuous near x, and the compatibility assures that all these functions are the same.

That is, the compatibility of these fragments is exactly the assertion that they fit together to make a function
x → Fz(x) on the whole space X. Since continuity is a local property, x → Fz(x) is in Co(X). Further,
there is just one way to piece the fragments together. Thus, diagrammatically,

Co(X)
** ''

. . . // Co(K2) // Co(K1)

Z

f2
;;v

v
v

v
v

f1

44jjjjjjjjjj
z→Fz

cc

Thus, Co(X) is a Fréchet space.

[5.0.1] Remark: Recall that a non-canonical metric on a countable limit of Banach spaces is given explicitly
by

d(f, g) =
∑
i

2−i
supKi

|f − g|
supKi

|f − g|+ 1

[5.0.2] Remark: When the whole space X is not a countable union of compacts, then we cannot form

a metric by this procedure. [10] Most physical spaces on which we consider spaces of functions will be
σ-compact, if not actually compact.

6. Fréchet spaces abstractly

Non-Banach complete metrizable function spaces, such as C∞[a, b] and Co(R), occur often and are important.
In fact, these are examples of countable limit of Banach spaces, which share most properties. With some
technical qualifications, these are Fréchet spaces, discussed just below.

Let V be a complex vector space with a metric d(, ). Suppose d is translation invariant in the sense that

d(x+ z, y + z) = d(x, y) (for all x, y, z ∈ V )

Note that this property does hold for the metrics induced from norms. Give V the topology induced by the
metric. A local basis at v ∈ V consists of open balls centered at v

{w ∈ V : d(v, w) < r}

The translation invariance implies that the open balls centered at general points v are the translates

v +Br = {v + b : b ∈ Br}

[10] One might recall that an uncountable sum of positive real numbers cannot converge.
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of the open ball Br of radius r centered at 0. That is, because of the translation invariance, the topology at
0 determines the topology on the whole vector space.

A topology on V is locally convex when there is a local basis at 0 (hence, at every point, by translating)
consisting of convex sets. A vector space V with a translation-invariant metric d(, ) is a pre-Fréchet space if
the topology is locally convex. When, further, the metric is complete, the space V is a Fréchet space.

[6.0.1] Remark: The local convexity requirement may seem obscure, but does hold in many important
cases, such as Co(X) and Ck(R) treated above, and is crucial for application. But not every metrizable
vectorspace is locally convex: `p with 0 < p < 1 is the simplest counter-example.

[6.0.2] Remark: Later, we will show that every Fréchet space is a countable limit of Banach spaces.
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