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The simplest physical object with an interesting function theory is the circle, S1 = R/2πZ, which inherits
group structure and translation-invariant differential operator d/dx from the real line R. The exponential
functions x → einx for n ∈ Z are group homomorphisms R/2πZ → C× and are eigenfunctions for d/dx on
R/2πZ. Finite or infinite linear combinations ∑

n∈Z
cn e

inx

are Fourier series. [1] Conveniently, a function so expressed is a linear combination of eigenvectors for
d/dx. That is, on functions with Fourier expansions [2] the linear operator of differentiation is diagonalized.
However, infinite-dimensional linear algebra is subtler than finite-dimensional. Some fundamental questions
are [3]

In what sense(s) can a function be expressed as a Fourier series?

Can a Fourier series be differentiated term-by-term?

How cautious must we be in differentiating functions that are only piecewise differentiable?

What will derivatives of discontinuous functions be?

[1] In the early 19th century, J. Fourier was an impassioned advocate of the use of such sums, of course writing

sines and cosines rather than complex exponentials. Euler, the Bernouillis, and others had used such sums in similar

fashions and for similar ends, but Fourier made a claim extravagant for the time, namely that all functions could be

expressed in such terms. Unfortunately, in those days there was no clear idea of what a function was, no vocabulary

to specificy classes of functions, and no specification of what it would mean to represent a function by such a series.

[2] The notion of has a Fourier expansion would need to clarify what has such an expansion means. Must it mean

that pointwise values can be retrieved from the Fourier series? Less? More?

[3] At about the time Fourier was promoting Fourier series, Abel proved that convergent power series can be

differentiated term-by-term in the interior of their interval (on R) or disk (in C) of convergence, and are infinitely-

differentiable functions. Abel’s result fit the optimistic expectations of the time, but created unreasonable expectations

for the behavior of Fourier series.
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Several further issues are implicit, and the best answers need viewpoints created first in 1906 by Beppo Levi,
1907 by G. Frobenius, in the 1930’s by Sobolev, and Schwartz post-1949, enabling legitimate discussion of
generalized functions (a.k.a., distributions). [4] There are natural technical questions, like

Why define generalized functions as dual spaces?

In brief, Schwartz’ 1940’s insight to define generalized functions as dual spaces is a natural consequence of one
natural relaxation of the notion of function. Rather than demand that functions produce pointwise values,
which precipitated endless classical discussion of what to do with jump discontinuities, instead declare that
functions in the broadest sense are merely things that can be integrated against. For given ϕ, the map that
integrates against it

f −→
∫
f(x)ϕ(x) dx

is a functional (C-valued linear map), and is, or ought to be, probably continuous in any reasonable topology.
To consider the collection of all continuous linear functionals is a reasonable way to enlarge the collection of
functions, as things to be integrated against.

From the other side, it might have been that this generalization of function is needlessly extravagant, but it
turns out that every distribution is a high-order derivative of a continuous function. Thus, since we do want
to be able to take derivatives indefinitely, there is no waste.

Further, in any of the several natural topologies on distributions, very nice ordinary functions are dense, and
the space of distributions is complete in a sense subsuming that for metric spaces. Thus, taking limits yields
all distributions, and produces no excess.

This discussion is easiest on the circle, or products of circles, making use of Fourier series, and clarifying
many technical questions about Fourier series. [5] This story is a prototype for more complicated examples.

There is an important auxiliary technical point. Natural spaces of functions do not have structures of Hilbert
spaces, but typically, of Banach spaces. Nevertheless, the simplicity of Hilbert spaces motivates comparisons
of natural function spaces with related Hilbert spaces. Such comparisons are Levi-Sobolev imbeddings or
Levi-Sobolev inequalities.

1. Provocative example

Let s(x) be the sawtooth function [6]

s(x) = x− π (for 0 ≤ x < 2π)

and made periodic by demanding s(x + 2πn) = s(x) for all n ∈ Z. In other words, letting [[x/2π]] be the
greatest integer less than or equal x/2π,

s(x) = x − 2π ·
[[ x

2π

]]
− π (for x ∈ R)

[4] K. Friedrichs’ important 1934-5 discussions of semi-bounded unbounded operators on Hilbert spaces used norms

defined in terms of derivatives, but only internally in proofs, while for Levi, Frobenius, and Sobolev these norms were

significant objects themselves.

[5] The classic reference is A. Zygmund, Trigonometric Series, I, II, first published in Warsaw in 1935, reprinted

several times, including a 1959 Cambridge University Press edition. The present discussion neglects many interesting

details, but is readily adaptible to more complicated situations, so necessarily our treatment is different from

Zygmund’s.

[6] One may also take s(x) = x for −π < x < π and extend by periodicity. This definition avoids the subtraction of

π, and has the same operational features. In the end, it doesn’t matter.
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Away from 2πZ, the sawtooth function is infinitely differentiable, with derivative 1. At x ∈ 2πZ the sawtooth
jumps down from value to π to value −π. There is no reason to worry about defining a value at x ∈ 2πZ.

The exponential functions ψn(x) = einx are not quite an orthonormal basis for the Hilbert space L2[0, 2π],
but are orthogonal: ∫ 2π

0

ψm(x) · ψn(x) dx =

 0 (for m 6= n)

2π (for m = n)

Anticipating that Fourier coefficients f̂(n) of 2πZ-periodic functions f are computed[7] by integrating against
ψn(x) = einx (conjugated):

f̂(n) =
1

2π

∫ 2π

0

f(x) e−inx dx

integration by parts gives

ŝ(n) =
1

2π

∫ 2π

0

s(x) · e−inx dx =


1

−in
(for n 6= 0)

0 (for n = 0)

Thus, in whatever sense a function is its Fourier expansion, we anticipate that

s(x) ∼
∑
n∈Z

ŝ(n) · einx =
∑
n 6=0

1

−in
· einx

Even though this series does not converge absolutely for any value of x, we will see below [8] that it does
converge to the value of s(x) for x 6∈ 2πZ. Since s(x) has discontinuities at 2πZ anyway, this is hardly
surprising. Nothing disturbing has happened.

Now differentiate. The sawtooth function is differentiable away from 2πZ, with value 1, and with uncertain
value at 2πZ. With exogenous reasons to differentiate the Fourier series term-by-term, with or without
confidence in doing so, and the blatant differentiability of s(x) away from 2πZ suggests it’s not entirely
ridiculous to differentiate term-by-term. Then

s′(x) =

 1 (for x 6∈ 2πZ)

? (for x ∈ 2πZ)
∼ −

∑
n 6=0

einx

The right-hand side is hard to interpret, certainly as having pointwise values. On the other hand, reasonably
interpreted, it is still ok to integrate against this sum: letting f̂(n) be the nth Fourier coefficient of a smooth
function f , and not worrying about justifications,∫ 2π

0

f(x)
(
−
∑
n6=0

einx
)
dx = −

∑
n 6=0

∫ 2π

0

f(x) einx dx = −2π
∑
n 6=0

f̂(−n)

= 2πf̂(0)− 2π
∑
n∈Z

f̂(n) ein·0 = 2πf̂(0)− 2πf(0) =

∫ 2π

0

f(x) dx − 2π · f(0)

[7] Apparently at first Fourier did not have this expression for the Fourier coefficients!

[8] We will prove that at points where left and right derivatives exist, piecewise continuous functions’ Fourier series

do converge to their pointwise values.
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The map

f −→
∫ 2π

0

f(x) dx − 2π · f(0)

has a sense for continuous f , and gives a functional. That the derivative of the sawtooth is mostly 1 gives
the integral of f (against 1) over [0, 2π]. Further, the −2πf(0) term forcefully suggests that the derivative
of the discontinuity of the sawtooth function is the (periodic) evaluation-at-0 functional f → f(0) multiplied

by −2π). [9]

[1.1.1] Remark: A truly disastrous choice at this point would be to think that since s′(x) is almost
everywhere 1 (in a measure-theoretic sense) that its singularities are somehow removable, and thus pretend
that s′(x) = 1. This would give s′′(x) = 0, and make the following worse than it is, and impossible to
explain.

Still, s′(x) is differentiable away from 2πZ, and by repeated differentiation

s(k+1)(x) =

 0 (for x 6∈ 2πZ)

? (for x ∈ 2πZ)
∼ −(i)k

∑
n 6=0

nk · einx

By now the right-hand sides are vividly not convergent. The summands do not go to zero, in fact, are
unbounded.

One can continue differentiating in this symbolic sense, but the meaning is unclear.

One reaction is to simply object to differentiating a non-differentiable function, even if its discontinuities are
mild. This is not productive.

Another unproductive viewpoint is to deny that Fourier series reliably represent the functions that produced
their coefficients.

A happier and more useful response is to suspect that the above computation is correct, though the question
mark needs explanation, and that the right-hand side is correct and meaningful, despite its divergence in
classical senses. The question is what meaning to attach. This requires preparation.

We will establish a context in which the derivatives of the sawtooth, and derivatives of other discontinuous
functions, are things to integrate against, rather than things to evaluate pointwise, and see that termwise
differentiation of Fourier series does capture an extended notion of function and derivative.

2. Natural function spaces on the circle S1 = R/2πZ
We review natural families of functions. In all cases, the object is to give the vector space of functions a
metric (if possible) which makes it complete, to allow taking limits inside the same class of functions. For

example, pointwise limits of continuous functions easily fail to be continuous. [10]

[2.1] Continuous functions and sup-norm

First, we care about continuous complex-valued functions. Although we have in mind continuous functions
on the circle S1 = R/2πZ, the basic result depends only upon the compactness of R/2πZ.

[9] The jump is downward rather than upward.

[10] Awareness of such possibilities and figuring out how to avoid them was the fruit of embarrassing errors and

experimentation throughout the 19th century. Unifying abstract notions such as metric space and general topological

space only became available in the early 20th century, with the work of Hausdorff, Fréchet, and others.
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We give the set Co(K) of (complex-valued) continuous functions on a compact topological space K the
metric

d(f, g) = sup
x∈K

|f(x)− g(x)|

The sup is finite because K is compact and f −g is continuous. [11] The right-hand side of this last equation
arises from the (sup) norm [12]

|f |∞ = |f |Co = sup
x∈K

|f(x)|

and d(f, g) = |f − g|Co . A main feature of continuous functions is that they have pointwise values. We have
the unsurprising but important

[2.1.1] Claim: With the Co(K) topology, for x ∈ K the evaluation functional [13] Co(K)→ C by f → f(x)
is continuous.

Proof: The inequality

|f(x)− g(x)| ≤ sup
y∈K
|f(y)− g(y)| (for f, g ∈ Co(K))

proves the continuity of evaluation. ///

[2.1.2] Theorem: The space Co(K) of (complex-valued) continuous functions on a compact topological

space K is complete. [14]

[2.1.3] Remark: Thus, being complete with respect to the metric arising in this fashion from a norm, by
definition Co(K) is a Banach space.

Proof: This is a typical three-epsilon argument. The point is the completeness, namely that a Cauchy
sequence of continuous functions has a pointwise limit which is a continuous function. First we observe that
a Cauchy sequence fi does have a pointwise limit. Given ε > 0, choose N large enough such that for i, j ≥ N
we have |fi − fj | < ε. Then, for any x in K, |fi(x) − fj(x)| < ε. Thus, the sequence of values fi(x) is a
Cauchy sequence of complex numbers, so has a limit f(x). Further, given ε′ > 0, choose j ≥ N sufficiently
large such that |fj(x)− f(x)| < ε′. Then for all i ≥ N

|fi(x)− f(x)| ≤ |fi(x)− fj(x)|+ |fj(x)− f(x)| < ε+ ε′

Since this is true for every positive ε′

|fi(x)− f(x)| ≤ ε (for all i ≥ N)

[11] Recall how to prove that a continuous function f on a compact set K is bounded: let Un be {x ∈ K : |f(x)| < n},
for n = 1, 2, . . .. The union of the these open Un’s is all of K. By compactness, there is a finite subcover, proving

the boundedness. But it’s not trivial to prove that closed intervals [a, b] are compact in this sense.

[12] Recall that a norm v → |v| on a complex vector space V is a non-negative real-valued function v → |v| which is

positive (meaning that |v| = 0 only for v = 0), homogeneous (meaning that |α · v| = |α|C · |v| for complex α, where

|α|C is the usual complex absolute value), and satisfies the triangle inequality (that |v+w| ≤ |v|+ |w|). The first two

properties are readily verified for the sup norm, and the triangle inequality follows from the readily verifiable fact

that the sup of the sum is less than or equal the sum of the sups.

[13] As usual, a (continuous) functional is a (continuous) linear map to C.

[14] There are many not-continuous pointwise limits of continuous functions, but these are not uniform pointwise

limits. In the early 19th century the distinction between the two notions was not clearly established, precipitating

technical confusion.
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This holds for every x in K, so the pointwise limit is uniform in x.

Now prove that f(x) is continuous. Given ε > 0, let N be large enough so that for i, j ≥ N we have
|fi − fj | < ε. From the previous paragraph

|fi(x)− f(x)| ≤ ε (for every x and for i ≥ N)

Fix i ≥ N and x ∈ K, and choose a small enough neigborhood U of x such that |fi(x)− fi(y)| < ε for any
y in U . Then

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |f(y)− fi(y)| < ε+ ε+ ε

Thus, the pointwise limit f is continuous at every x in U . ///

[2.2] Differentiation on S1 = R/2πZ
To talk about differentiability return to the concrete situation of R and its quotient S1 = R/2πZ.

The continuous quotient map q : R → R/2πZ yields continuous functions under composition f ◦ q for
f ∈ Co(S1) = Co(R/2πZ). More is true, namely, that a continuous function F on R is of the form f ◦ q if
and only if F is periodic in the sense that F (x+2πn) = F (x) for all x ∈ R and n ∈ Z. Indeed, the periodicity
gives a well-defined function f on R/2πZ. Then the continuity of f follows immediately from the definition
of the quotient topology on S1 = R/2πZ.

As usual, a real-valued or complex-valued function f on R is continuously differentiable if it has a derivative
itself a continuous function. That is, the limit

df

dx
(x) = f ′(x) = lim

h→0

f(x+ h)− f(x)

h

is required to exist for all x, and the function f ′ is in Co(R). Let f (1) = f ′, and inductively define

f (i) =
(
f (i−1)

)′
(for i > 1)

when the corresponding limits exist.

We must make explicit our expectation that differentiation on the circle S1 = R/2πZ is descended from
differentiation on the real line. That is, characterize differentiation on S1 = R/2πZ in terms of such a
compatibility relation. Thus, for f ∈ Ck(S1), require that the differentiation D on S1 be related to the
differentiation on R by

(Df) ◦ q =
d

dx
(f ◦ q)

Via the quotient map q : R→ R/2πZ, make a preliminary definition of the collection of k-times continuously
differentiable functions on S1, with a topology, by

Ck(S1) = {f on S1 : f ◦ q ∈ Ck(R)}

with the Ck-norm [15]

|f |Ck =
∑

0≤i≤k

|(f ◦ q)(i)|∞ =
∑

0≤i≤k

sup
x
|(f ◦ q)(i)(x)|

[15] Granting that the sup norm on continuous functions is a norm, verification that the Ck-norm is a norm is

straightforward.
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where F (i) is the (continuous!) ith derivative of F on R. The associated metric on Ck(S1) is

d(f, g) = |f − g|Ck

[2.2.1] Remark: Among other features, the norm on the spaces Ck makes continuity of the differentiation
map Ck → Ck−1 completely obvious.

[2.2.2] Remark: Implicit in this definition is that, viewed as functions on [0, 2π], the values and derivatives
must agree at the endpoints: f(0) = f(2π) for f continuous on S1, f ′(0) = f ′(2π) for f ∈ C1(S1), and so
on. This is not whimsical, but is intrinsic to the structure of S1.

An often-seen equivalent version of the norm is

|f |varCk = sup
0≤i≤k

|(f ◦ q)(i)|∞ = sup
0≤i≤k

sup
x
|(f ◦ q)(i)(x)|

These two norms give the same topology, since for complex numbers a0, . . . , ak

sup
0≤i≤k

|ai| ≤
∑

0≤i≤k

|ai| ≤ (k + 1) · sup
0≤i≤k

|ai|

[2.2.3] Claim: There is a unique, well-defined, continuous (differentiation) map D : Ck(S1) → Ck−1(S1)
giving a commutative diagram

Ck(R)
d/dx // Ck−1(R)

Ck(S1)
D //

−◦q

OO

Ck−1(S1)

−◦q

OO

[2.2.4] Remark: One might feel that this proof is needlessly complicated. However, it is worthwhile to do
it this way. This approach applies broadly, and is as terse as possible without ignoring important details.

Proof: The point is that differentiation of periodic functions yields periodic functions. That is, we claim
that, for f ∈ Ck(S1), the pullback f ◦ q has derivative d

dx (f ◦ q) which is the pullback g ◦ q of a unique
function g ∈ Ck−1(S1). To see this, first recall that, by definition of the quotient topology, a continuous
function F on R descends to a continuous function on S1 = R/2πZ if and only if it is 2πZ-invariant, that is
F (x+ 2πn) = F (x) for all x ∈ R and n ∈ Z. Then, from our definition of Ck(S1), a function F ∈ Ck(R) is
a pullback via q from Ck(R/2πZ) exactly when F (i)(x+ 2πn) = F (i)(x) for all x ∈ R, n ∈ Z, and 0 ≤ i ≤ k,
since then these continuous functions descend to the circle. Let

(TyF )(x) = F (x+ y) (for x, y ∈ R)

Since d
dx is a linear, constant-coefficient differential operator, the operations Ty and d

dx commute, that is,
∂F
∂x (x+ y) = ∂

∂x (F (x+ y)), which is to say

Ty ◦
d

dx
=

d

dx
◦ Ty

In particular, for n ∈ Z,

T2πn(
d

dx
(f ◦ q)) =

d

dx
(T2πn(f ◦ q)) =

d

dx
(f ◦ q)

This shows that a (continuous) derivative is periodic when the (continuously differentiable) function is
periodic.
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From the definition of the Ck-norm,

|Df |Ck−1 ≤ |f |Ck

so differentiation is continuous. ///

[2.2.5] Remark: In light of the uniqueness of differentiation on S1, from now on write d/dx for the
differentiation D on S1, and f (k) for Dkf . Now rewrite the description of Ck(S1) more simply, as

Ck(S1) = {f on S1 : f ◦ q ∈ Ck(R)}

with the Ck-norm

|f |Ck =
∑

0≤i≤k

|f (i)|∞ =
∑

0≤i≤k

sup
x
|f (i)(x)|

where f (i) is the (continuous!) ith derivative of f . The associated metric on Ck(S1) still is

d(f, g) = |f − g|Ck

There is the alternative norm

|f |varCk = sup
0≤i≤k

sup
x
|f (i)(x)| = sup

0≤i≤k
|f (i)|∞

Again, these two norms give the same topology, for the same reason as before.

[2.2.6] Claim: With the topology above, the space Ck(S1) is complete, so is a Banach space.

Proof: The case k = 1 illustrates all the points. For a Cauchy sequence {fn} in C1(S1), both {fn} and
{f ′n} are Cauchy in Co(S1), so converge uniformly pointwise: let

f(x) = lim
n
fn(x) g(x) = lim

n
f ′n(x)

The convergence is uniformly pointwise, so f and g are Co. If we knew that f were pointwise differentiable,
then the demonstrated continuity of d

dx : C1(S1)→ Co(S1) gives the expected conclusion, that f ′ = g.

What could go wrong? The issue is whether f is differentiable!

By the fundamental theorem of calculus, for any index i, since fi is continuous, [16]

fi(x)− fi(a) =

∫ x

a

f ′i(t) dt

Interchanging limit and integral [17] shows that the limit of the right-hand side is

lim
i

∫ x

a

f ′i(t) dt =

∫ x

a

lim
i
f ′i(t) dt =

∫ x

a

g(t) dt

[16] The fundamental theorem of calculus for integrals of continuous functions needs only the simplest notion of an

integral.

[17] For example, interchange of limit and integral is justified by the simplest form of Lebesgue’s Dominated

Convergence Theorem. It may seem to be overkill to invoke the Dominated Convergence Theorem in this context,

but systematic attention to such details helps us avoid many of the gaffes of early 19th-century analysis. Lebesgue’s

deserved fame is due to his overcoming the murkiness of earlier theories of integration.
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Thus, the limit of the left-hand side is

f(x)− f(a) =

∫ x

a

g(t) dt

from which f ′ = g. That the derivative f ′ of the limit f is the limit of the derivatives is not a surprise, since
if f is differentiable, what else could its derivative be? The point is that f is differentiable, ascertained by
computing its derivative, which happens to be g. ///

[2.2.7] Remark: Again, the differentiation map C1(S1) → Co(S1) is continuous by design. Thus, if a
limit of C1 functions fn is differentiable, its derivative must be the obvious thing, namely, the limit of
the derivatives f ′n. The issue was whether the limit of the fn is differentiable. The proof shows that it is
differentiable by computing its derivative via the Mean Value Theorem.

By construction, and from the corresponding result for Co,

[2.2.8] Claim: With the Ck-topology, for x ∈ S1 and integer 0 ≤ i ≤ k, the evaluation functional
Ck(S1)→ C by

f −→ f (i)(x)

is continuous. ///

This applies to Fourier series, without any claim about what functions are representable as Fourier series.
With ψn(x) = einx,

[2.2.9] Claim: For complex numbers cn, when∑
n

|cn| · |n|k < +∞

the Fourier series
∑
cn ψn converges to a function in Ck(S1), and its derivative is computed by termwise

differentiation
d

dx

∑
cn ψn =

∑
(in) cn ψn ∈ Ck−1(S1)

Proof: The Co(S1) norm of a Fourier series is easily estimated, by∣∣∣∣∣∣
∑
|n|≤N

cn ψn(x)

∣∣∣∣∣∣ ≤
∑
|n|≤N

|cn| (for all x ∈ S1)

The right-hand side is independent of x ∈ S1, so bounds the sup over x ∈ S1. Similarly, estimate derivatives
(of partial sums) by ∣∣∣∣∣∣∣

 ∑
|n|≤N

cn ψn

(k)
∣∣∣∣∣∣∣ ≤

∑
|n|≤N

|cn|nk

Thus, the hypothesis of the claim implies that the partial sums form a Cauchy sequence in Ck. The partial
sums of a Fourier series are finite sums, so can be differentiated term-by-term. Thus, we have a Cauchy
sequence of Ck functions, which converges to a Ck function, by the completeness of Ck. That is, the given
estimate assures that the Fourier series converges to a Ck function.

Further, since differentiation is a continuous map Ck → Ck−1, it maps Cauchy sequences to Cauchy
sequences. In particular, the Cauchy sequence of derivatives of partial sums converges to the derivative
of the limit of the original Cauchy sequence. ///
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We want the following to hold. Unsurprisingly, it does:

[2.2.10] Claim: The inclusion Ck(S1) ⊂ Ck−1(S1) is continuous. [18]

Proof: The point is that, for f ∈ Ck(S1) the obvious inequality

|f |Ck−1 ≤ |f |Ck

gives an explicit estimate for the continuity. ///

3. Topology on C∞(S1)

Next, we care about infinitely differentiable [19] functions, that is, smooth functions, denoted C∞(S1). At
least as sets (or vector spaces),

C∞(S1) =
⋂
k

Ck(S1)

However, this space C∞(S1) of smooth functions provably does not have a structure of Banach space.

Observing that a descending intersection is a (projective) limit [20] we should declare that

C∞(S1) = lim
k
Ck(S1)

[3.1.1] Remark: Another natural space of functions is Coc (R), the space of compactly-supported continuous
functions on R. Since (as a set)

Coc (R) =
⋃
N

{f ∈ Coc (R) : support f ⊂ [−N,+N ]} = colimN{f ∈ Coc (R) : support f ⊂ [−N,+N ]}

Coc (R) is an ascending union (colimit) of Banach spaces. [21] Colimits of Banach spaces are even less likely
to be Banach spaces than are limits. In this example, the colimit is not even metrizable, since, as we’ll see
later, a topology in which it is suitably complete makes it violate the conclusion of Baire’s theorem: Coc (R)

is a countable union of nowhere dense subsets. [22] We will address this when looking at functions on R.

Returning to C∞(S1) = limk C
k(S1), unfortunately we are temporarily insufficiently sophisticated about

what kind of object this limit might be. In particular, we do not know what kind of auxiliary objects to use

[18] In fact, the image of Ck in Ck−1 is dense, but, we will prove this later as a side-effect of sharper results.

[19] Use of infinitely here is potentially misleading, but is standard. Sometimes the phrase indefinitely differentiable

is used, but this also offers its own potential for confusion. A better (and standard) contemporary usage is smooth.

[20] Although descending intersections are (projective) limits, with projections being the natural inclusions, not every

limit should be construed as a descending intersection. Indeed, solenoids cannot usefully be construed as descending

intersections. The notion of limit is broader than either of these. Similarly, ascending unions are colimits, but there

are much more general types of colimits.

[21] That the limitands are Banach spaces is easy: first, the set of continuous functions with support in [−N,N ]

is the subspace of the Banach space Co[−N,N ] defined by f(−N) = f(N) = 0. These evaluation functionals are

continuous, so this is a closed subspace of a Banach space, and is Banach. Since [−N,N ] is compact, the space

Co[−N,N ] with the sup norm is Banach, as we saw earlier.

[22] The Baire Category Theorem asserts that a complete metric space cannot be a countable union of nowhere dense

subsets. A nowhere dense subset is one whose closure contains no non-empty open sets.
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in the very definition of limit. By now we know that limits of topological spaces exist (and are necessarily
unique), but we need more structure. To explain this requires a general notion of topological vector space.

[3.1.2] Remark: Too optimistic speculation about what the limit might be leads to trouble: as it happens,

this limit is provably not a Banach space (nor Hilbert space). [23] A limit of topological spaces has a unique
topology, whatever it may be.

We anticipate that a limit has a vector space structure compatible with the limit’s topology.

[3.1.3] Remark: There is the disquieting question of what test objects Z we should consider in the
diagrammatic characterization, with compatible mappings Z → Ck(S1) to define the limit. Similarly, we
should wonder how large a class of vector spaces with topologies is needed. That is, existence is perhaps
non-trivial.

The broadest necessary class of vector spaces with topologies is the following. A topological vector space is
what one would reasonably imagine, namely, a (complex) vector space V with a topology such that

V × V → V by v × w → v + w is continuous

and such that

C× V → V by α× v → α · v is continuous

and such that the topology is Hausdorff. [24] We require that the topological vector spaces be locally convex
in the sense that there is a local basis at 0 consisting of convex sets. [25] It is easy to prove that Hilbert and
Banach spaces are locally convex, which is why the issue is invisible in that context. Dismayingly, there are
easily constructed complete (invariantly) metrized topological vector spaces which are not locally convex.
[26]

Returning to the discussion of limits of topological vector spaces: since the continuity requirements for a
topological vector space are of the form A×B → C (rather than having the arrow going the other direction),
there is a diagrammatic argument that the continuous algebraic operations on the limitands induce continuous
algebraic operations on the limit, in the limit topology (as limit of topological spaces).

[23] The non-Banach-ness of C∞(S1) is not the main point, but it is reasonable to wonder how this is proven. Briefly,

with a definition of topological vector space, we will prove that a topological vector space is normable if and only if

there is a local basis at 0 consisting of bounded opens. This is independent of completeness. The relevant sense of

bounded cannot be the usual metric sense. Instead, a set E in a topological vector space is bounded when, for every

open neighborhood U of 0, there is t > 0 such that E ⊂ z ·U for all complex z with |z| ≥ t. That is, sufficiently large

dilates of opens eventually contain E. But we will eventually that open balls in Ck(S1) are not contained in any

dilate of any open ball in Ck+1(S1). The definition of the limit topology then shows that C∞(S1) is not normable.

A more detailed discussion will be given later.

[24] In fact, soon after giving the definition, one can show that the weaker condition that points are closed, implies

the Hausdorff condition in topological spaces which are vector spaces with continuous vector addition and scalar

multiplication. Indeed, the inverse image of {0} under x× y → x− y is the diagonal.

[25] This sense of convexity is the usual: a set X in a vector space is convex when, for all tuples x1, . . . , xn of points

in X and all tuples t1, . . . , tn of non-negative reals with Σiti = 1, the sum Σitixi is again in X.

[26] The simplest examples of complete metric topological vector spaces which are not locally convex are spaces `p

with 0 < p < 1. The metric comes from a norm-like function which is not a norm: |{cn}|p =
∑
n |cn|

p. No, there is

no pth root taken, unlike the spaces `p with p ≥ 1, and this causes the function | |p to lose the homogeneity it would

need to be a norm. Nevertheless, such a space is complete. It is an amusing exercise to prove that it is not locally

convex.
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[3.1.4] Claim: Products and limits of topological vector spaces exist. Products and limits of locally convex
spaces are locally convex. (Proof in appendix.)

[3.1.5] Remark: As usual, if they exist at all, then products and limits are unique up to unique isomorphism.

[3.1.6] Remark: Coproducts and colimits are more fragile, and will be treated, as needed, in discussion of
function theory on non-compact spaces such as R.

Thus, C∞(S1) has a (limit) topology for general reasons.

[3.1.7] Claim: Differentiation f → f ′ is a continuous map C∞(S1)→ C∞(S1).

[3.1.8] Remark: Of course differentiation maps the smooth functions to themselves. Continuity of
differentiation in the limit topology is less clear.

Proof: We already know that differentiation d/dx gives a continuous map Ck(S1) → Ck−1(S1).
Differentiation is compatible with the inclusions among the Ck(S1). Thus, we have a commutative diagram

C∞(S1)
)) ))

. . . Ck(S1) // Ck−1(S1) // . . .

C∞(S1)
55 55

. . . Ck(S1) //

d
dx

99ssssssssss
Ck−1(S1) //

d
dx

;;vvvvvvvvvv
. . .

Composing the projections with d/dx gives (dashed) induced maps from C∞(S1) to the limitands, inducing
a unique (dotted) map to the limit, as in

C∞(S1)
)) ))

. . . Ck(S1) // Ck−1(S1) // . . .

C∞(S1)

55kkkkkkkk

33gggggggggggggg

22eeeeeeeeeeeeeeeeeeeee

d
dx

OO

55 55
. . . Ck(S1) //

99ssssssssss
Ck−1(S1) //

;;vvvvvvvvvv
. . .

This proves the continuity of differentiation, in the limit topology. ///

[3.1.9] Corollary: When a Fourier series
∑
n cn ψn satisfies∑

m

|cn| |n|N < +∞ (for every N)

the series is a smooth function, which can be differentiated term-by-term, and its derivative is∑
m

cn (in)ψn

Proof: The hypothesis assures that the Fourier series lies in Ck for every k. Differentiation is continuous
in the limit topology on C∞. ///

[3.1.10] Remark: This continuity is necessary to define differentiation of distributions below.
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4. Pointwise convergence of Fourier series

Before proceeding further, a classical criterion for pointwise convergence of Fourier series is comforting.

We can prove pointwise convergence even before proving that the exponentials give an orthonormal basis for
L2[0, 2π]. The hypotheses of the convergence claim below are far from optimal, but are sufficient for some
purposes, and are tangibly verifiable.

The only slightly subtle thing needed is

[4.1.1] Claim: (Riemann-Lebesgue) For f ∈ L2(S1), the Fourier coefficients f̂(n) of f go to 0.

Proof: The L2 norm of ψn is
√

2π. Bessel’s inequality [27]

|f |2L2 ≥
∑
n

∣∣∣〈f, ψn√
2π

〉∣∣∣2
from abstract Hilbert-space theory applies to an orthonormal set, whether or not it is an orthonormal basis.
Thus, the sum on the right converges, so by Cauchy’s criterion the summands go to 0. ///

A function f on S1 = R/2πZ is (finitely) piecewise Co when there are finitely many real numbers
a0 ≤ a1 ≤ . . . ≤ an−1 ≤ an = a0 + 1 and C0 functions fi on [ai, ai+1] such that

fi(x) = f(x) on [ai, ai+1] (except possibly at the endpoints)

Thus, while fi(ai+1) may differ from fi+1(ai+1), and f(ai+1) may be different from both of these, the function
f is continuous in the interiors of the intervals, and behaves well near the endpoints, if not at the endpoints.

Write

〈f, F 〉 =

∫ 2π

0

f(x)F (x) dx

and

f̂(n) =
1

2π

∫ 2π

0

f(x)ψn(x) dx =
1

2π
〈f, ψn〉

[4.1.2] Claim: Let f be piecewise Co on S1. Let xo be a point at which f has both left and right derivatives
(even if they do not agree), and is continuous. Then the Fourier series of f evaluated at xo converges to
f(xo). That is,

f(xo) =
∑
n∈Z

f̂(n) ψn(xo) (a convergent sum)

[4.1.3] Remark: The hypotheses of the claim are designed to be indifferent to the requirement that values
and derivatives at endpoints of [0, 2π] agree. We certainly will require this matching subsequently, but this
preliminary result is useful.

[27] Proof of Bessel’s inequality is straightforward: for finite orthonormal set {ei} and a vector v in a Hilbert space,

0 ≤ |v −
∑
i

〈v, ei〉ei|2 = |v|2 − 2
∑
i

〈v, ei〉〈v, ei〉+
∑
i

|〈v, ei〉|2 = |v|2 −
∑
i

|〈v, ei〉|2

For an arbitrary orthonormal set, the sum is the sup of the finite sub-sums, so the general Bessel inequality follows.
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Proof: First, make reductions to unclutter the notation. By considering f(x) − f(xo), and observing that
constants are represented pointwise by their Fourier expansions, we can assume that f(xo) = 0. The Fourier
coeffients of translates of a function are expressible in terms of the Fourier coefficients of the function itself:∫ 2π

0

f(x+ xo)ψn(x) dx =

∫ 2π

0

f(x)ψn(x− xo) dx = ψn(xo)

∫ 2π

0

f(x)ψn(x) dx

The left-hand side is 2π times the nth Fourier coefficient of f(x+xo), that is, the nth Fourier term of f(x+xo)
evaluated at 0, while the right-hand side is 2π times the nth Fourier term of f(x) evaluated at xo. Thus,
simplify further by taking xo = 0, without loss of generality.

A partial sum of the Fourier expansion evaluated at 0 is∑
−M≤n<N

1

2π

∫ 2π

0

f(x)ψn(x) dx =
1

2π

∫ 2π

0

f(x)
∑

−M≤n<N

ψn(x) dx

=
1

2π

∫ 2π

0

f(x)

ψ−1(x)− 1
(ψN (x)− ψ−M (x)) dx =

1

2π

〈 f

ψ−1 − 1
, ψN

〉
− 1

2π

〈 f

ψ−1 − 1
, ψ−M

〉

The latter two terms are Fourier coefficients of f/(ψ−1− 1), so go to 0 by the Riemann-Lebesgue lemma for
f(x)/(ψ−1(x)− 1) in L2(S1). Since xo = 0 and f(xo) = 0

f(x)

ψ−1(x)− 1
=

f(x)

x
· x

ψ−1(x)− 1
=

f(x)− f(xo)

x− xo
· x− xo
e−ix − e−ixo

The existence of left and right derivatives of f at xo = 0 is exactly the hypothesis that this expression has
left and right limits at xo, even if they do not agree.

At all other points the division by ψ−1(x)− 1 does not disturb the continuity. Thus, f/(ψ−1 − 1) is still at
least continuous on each interval [ai, ai+1] on which f was essentially a Co function. Therefore, ignoring the
endpoints, which do not contribute to the integrals, f/(ψ−1−1) is continuous on a finite set of closed (finite)
intervals, so bounded on each one. Thus, f/(ψ−1 − 1) is indeed L2, and we can invoke Riemann-Lebesgue
to see that the integral goes to 0 = f(xo). ///

[4.1.4] Corollary: The Fourier series of a function in C1(S1) converges pointwise to the function’s values.
///

[4.1.5] Remark: Pointwise convergence is not L2 convergence, and we have not yet proven that the
exponentials are an orthonormal basis for the Hilbert space L2(S1). The pointwise result just proven is
suggestive, but not decisive.

5. Distributions: generalized functions

Although much amplification is needed, a topology on C∞(S1) allows the bare definition: a distribution or

generalized function [28] on S1 is a continuous linear functional [29]

u : C∞(S1) −→ C

[28] What’s in a name? In this case, generalized function expresses the intention to think of distributions as extensions

of ordinary functions, not as abstract things in a dual space.

[29] The standard usage is that a functional on a complex vector space V is a C-linear map from V to C. Continuity

may or may not be required, and the topology in which continuity is required may vary. It is in this sense that there

is a subject functional analysis.
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Why a dual space? Unsurprisingly, as soon as we have a good intrinsic notion of integral on S1 in the next
section, a function ϕ ∈ Co(S1) gives rise to a distribution uϕ by integration against ϕ,

uϕ(f) =

∫
S1

f(x)ϕ(x) dx (for f ∈ C∞(S1))

Thus, we relax our notion of function, no longer requiring pointwise values, but only that a function can be
integrated against. Then it may make sense to declare functionals in a dual space to be generalized functions.
The vector space of distributions is denoted

distributions = continuous dual of C∞(S1) = Homo
C(C∞(S1),C) = C∞(S1)∗

That is, given a reasonable notion of integral, we have a continuous imbedding

Co(S1) ⊂ C∞(S1)∗ by ϕ −→ uϕ where (again) uϕ(f) =

∫
S1

f(x)ϕ(x) dx (f ∈ C∞(S1))

Typically, the dual of a limit of topological vector spaces is not the colimit of the duals of the limitands.
Duals of colimits do behave well, in the sense that in reasonable situations

Hom(colimiXi, Z) ≈ limiHom(Xi, Z)

But C∞(S1) is a limit, not a colimit. Luckily, the dual of a limit of Banach spaces is the colimit of the duals:

[5.1.1] Theorem: Let X = limiBi be a limit of Banach spaces Bi with projections pi : X → Bi. Any
λ ∈ X∗ = Homo

C(X,C) factors through some Bi. That is, there is λj : Bj → C such that

λ = λj ◦ pj : X → C

Therefore,
(limiBi)

∗ ≈ colimiB
∗
i

Proof: Without loss of generality, each Bi is the closure of the image of X, since otherwise replacement of
each Bi by that closure.

Let U be an open neighborhood of 0 in X = limiBi such that λ(U) is inside the open unit ball at 0 in C,

by the continuity at 0. By properties of the limit topology [30] there are finitely-many indices i1, . . . , in and
open neighborhoods Vit of 0 in Bit such that

n⋂
t=1

p−1it Vit ⊂ U (projections pi from the limit X)

To have λ factor (continuously) through a limitand Bj , we need a single condition to replace the conditions

from i1, . . . , in. Let j be any index [31] with j ≥ it for all t, and

V ′j =

n⋂
t=1

p−1it,jVit ⊂ Bj

[30] Recall that X = limiBi is the closed subspace (with the subspace topology) of the product Y = ΠiBi of all

tuples {bi} in which pij : bi → bj for i > j under the transition maps pij : Bi → Bj . A local basis at 0 in the product

consists of products V = ΠiVi of opens Vi in Bi with Vi = Bi for all but finitely-many i, say i1, . . . , in.

[31] The index set need not be the positive integers, but must be a poset (partially ordered set), directed, in the sense

that for any two indices i, j there is an index k such that k > i and k > j.
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By the compatibility
p−1it = p−1j ◦ p

−1
it,j

we have a single sufficient condition, namely p−1j V ′j ⊂ U . By the linearity of λ, for ε > 0

λ(ε · p−1j Vj) = ε · λ(p−1j Vj) ⊂ ε-ball in C

By continuity [32] of scalar multiplication on Bj , ε · V ′j is an open containing 0 in Bj .

We claim that λ factors through pjX with the subspace topology from Bj . This makes pjX a normed space,

if not Banach. [33] Simplifying notation, let λ : X → C and p : X → N be continuous linear to a normed
space N , with

λ(p−1V ) ⊂ unit ball in C (for some neighborhood V of 0 in N)

We claim that λ factors through p : X → N as a (continuous) linear map. Indeed, by the linearity of λ,

λ(
1

n
· p−1V ) ⊂ 1

n
-ball in C

so

λ

(⋂
n

1

n
· p−1V

)
⊂ 1

m
-ball (for all m)

Then

λ

(⋂
n

1

n
· p−1V

)
⊂
⋂
m

1

m
-ball = {0}

Thus, ⋂
n

p−1(
1

n
· V ) =

⋂
n

1

n
· p−1V ⊂ kerλ

For x, x′ in X with px = px′, certainly px− px′ ∈ 1
n V for all n = 1, 2, . . .. Therefore,

x− x′ ∈
⋂
n

p−1(
1

n
V ) ⊂ kerλ

and λx = λx′. This proves the subordinate claim that λ factors through p : X → N via a (not necessarily
continuous) linear map µ : N → C. For the continuity of µ, by its linearity

µ(ε · V ) = ε · µV ⊂ ε-ball in C

proving the continuity of µ : N → C. [34] This proves the claim.

[32] Multiplication by a non-zero scalar is a homeomorphism: scalar multiplication by ε 6= 0 is continuous,

scalar multiplication by ε−1 is continuous, and these are mutual inverses, so these scalar multiplications are

homeomorphisms.

[33] Recall that a normed space is a topological vector with topology given by a norm | | as in a Banach space,

but without the requirement that the space is complete with respect to the metric d(x, y) = |x − y|. This slightly

complicated assertion is correct: in most useful situations pjX is rarely all of Bj , even when Bj is a completion of

pjX.

[34] Here we need V to be open, not merely a set containing 0. Continuity at 0 is all that is needed for continuity of

linear maps, since |λ(x)| < ε for |x| < δ gives |λ(x− x′)| < ε for |x− x′| < δ.
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The claim gives continuous linear λj : pjX → C through which λ factors.

Then λj : pjX → C extends by continuity [35] to the closure of pjX in Bj , which is Bj , giving the desired
map. ///

[5.1.2] Remark: The same proof shows that a continuous linear map from a limit of Banach spaces to a
normed space factors through a limitand.

[5.1.3] Corollary: The space of distributions on S1 is the ascending union (colimit)

C∞(S1)∗ =
(
lim kC

k(S1)
)∗

= colimkC
k(S1)∗ =

⋃
kC

k(S1)∗

of duals of the Banach spaces Ck(S1). ///

The order of a distribution u is the smallest k such that u ∈ Ck(S1)∗. Since for the circle the space of all

distributions is exactly this colimit, the order of a distribution is well-defined. [36]

Distributions as generalized functions should be differentiable, compatibly with the differentiation of
functions. The idea is that differentiation of distributions should be compatible with integration by parts for
distributions given by integration against C1 functions. Assuming an integral on S1 as in the next section,
for functions f, g, by integration by parts,∫

S1

f(x) g′(x) dx = −
∫
S1

f ′(x) g(x) dx

with no boundary terms because S1 has empty boundary. Note the negative sign. Motivated by this, define
the distributional derivative u′ of u ∈ C∞(S1)∗ to be another distribution defined by

u′(f) = −u(f ′) (for any f ∈ C∞(S1))

The continuity of differentiation d
dx : C∞(S1)→ C∞(S1) assures that u′ is a distribution, since

u′ = −(u ◦ d

dx
) : C∞(S1)→ C

[35] The extension by continuity is unambiguous, since λj is linear. In more detail: for λ a continuous linear function

on a dense subspace Y of a topological vector space X, given ε > 0, take convex neighborhood U of 0 in X such

that |λy| < ε for y ∈ U . We may suppose U = −U by replacing U by −U ∩ U . Let yi be a Cauchy net approaching

x ∈ X. For yi and yj inside x+ 1
2U , |λyi − λyj | = |λ(yi − yj)|, using the linearity. By the symmetry U = −U , since

yi − yj ∈ 1
2 · 2U = U , this gives |λyi − λyj | < ε. Then unambiguously define λx to be the limit of the λyi.

[36] The Riesz representation theorem asserts that the dual of Co(S1) is Borel measures on S1, so order-zero

distributions are Borel measures. For example, elements η of L2(S1) are Borel measures, by giving integrals

f →
∫
S1 f(x) η(x) dx for f ∈ Co(S1). Thus, integrating continuous functions against Borel measures is a semi-

classical instance of generalizing functions in our present style, integrating against measures. However, the duals of

the higher Ck(S1)’s don’t have such a classical interpretation. The fact that C1(S1) can be construed as distributional

derivatives of Borel measures is not strongly related to Radon-Nikodym derivatives of measures, because, for example,

the distributional derivative of a point-mass measure is not a measure.
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6. Invariant integration, periodicization

We an (invariant) integral on the circle S1 = R/2πZ. The main property required is translation invariance,
meaning that, for a (for example) continuous function f on S1,∫

S1

f(x+ y) dx =

∫
S1

f(x) dx (for all y ∈ S1)

This invariance is sufficient to prove that various important integrals vanish.

For example, let ψm(x) = eimx. As an instance of an important idea, without explicit calculus-like
computations,

[6.1.1] Claim: (Cancellation Lemma) For m 6= n, for any reasonable translation-invariant integral on S1∫
S1

ψm(x)ψn(x) dx = 0

Proof: For m 6= n, the function f(x) = ψm(x)ψn(x) is a non-trivial (not identically 1) continuous group
homomorphism S1 → C×, meaning that there is y ∈ S1 such that f(y) 6= 1. The change of variables
x→ x+ y in the integral does not change the overall value of the integral, so∫

S1

f(x) dx =

∫
S1

f(x+ y) dx =

∫
S1

f(x) · f(y) dx = f(y)

∫
S1

f(x) dx

Thus, the integral I has the property that I = t · I where t 6= 1. This gives (1 − t) · I = 0, so I = 0 since
t 6= 1. ///

[6.1.2] Remark: This vanishing trick is impressive, since nothing specific about the continuous group
homomorphism f or topological group (S1 here) is used, apart from the finiteness of the total measure of the
group, which comes from its compactness. That is, the same proof would show that integrals over compact
groups of non-trivial group homomorphisms are 0. However, a notion of invariant measure [37] for general
groups requires effort. Nevertheless, with an invariant measure, the same argument succeeds.

Less critically than the invariance, we want a normalization [38]∫
S1

1 dx = vol (S1) = vol (R/2πZ) = 2π

Then ∫
S1

|ψn(x)|2 dx =

∫
S1

1 dx = 2π

Thus, without any explicit presentation of the integral or measure, we have proven that the distinct
exponentials are an orthogonal set with norms

√
2π with respect to the inner product

〈f, g〉 =

∫
S1

f(x) g(x) dx

[37] Translation-invariant measures on topological groups are called Haar measures. General proof of their existence

takes a little work, and invokes the Riesz representation theorem. Uniqueness can be made to be an example of a

more general argument about uniqueness of invariant functionals.

[38] The measure of the circle need not be normalized to be 2π, but this is natural when presenting it as R/2πZ.
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An integration by parts formula should be expected, with no boundary terms since S1 = R/2πZ has empty
boundary. Indeed, without constructing the invariant integral, we prove what we want from its properties:

[6.1.3] Claim: Let f →
∫
S1 f(x) dx be an invariant integral on S1, for f ∈ Co(S1). Then for f ∈ C1(S1)∫

S1

f ′(x) dx = 0

and we have the integration by parts formula for f, g ∈ C1(S1)∫
S1

f(x) g′(x) dx = −
∫
S1

f(x)′ g(x) dx

[6.1.4] Remark: Vanishing of integrals of derivatives does not depend on the particulars of the situation.
The same argument succeeds on an arbitrary group possessing (translation) invariant differentiation(s) and
an invariant integral. Thus, the specific geometry of the circle is not needed to argue that

∫
S1 f

′(x)dx =∫ 2π

0
f(x) dx = f(2π) − f(0) = 0 because f is periodic. The latter classical argument is valid, but fails to

show a generally applicable mechanism. The same independence of particulars applies to the integration by
parts rule.

Proof: The translation invariance of the integral makes the integral of a derivative 0, by direct computation,
as follows. We interchange a differentiation and an integral. [39]∫

S1

f ′(x) dx =

∫
S1

∂

∂t
|t=0 f(x+ t) dx =

d

dt
|t=0

∫
S1

f(x+ t) dx =
d

dt
|t=0

∫
S1

f(x) dx = 0

by changing variables in the integral. Then apply this to the function (f · g)′ = f ′g + fg′ to obtain∫
S1

f ′(x) g(x) dx+

∫
S1

f(x) g′(x) dx = 0

which gives the integration by parts formula. ///

The usual (Lebesgue) integral on the uniformizing R has the corresponding property of translation invariance.

Since we present the circle as a quotient R→ R/2πZ = S1 of R we expect a compatibility [40]

∫
R
F (x) dx =

∫
R/2πZ

∑
n∈Z

F (x+ 2πn)

 dx

for at least compactly-supported continuous functions F on R.

[39] The argument bluntly demands this interchange of limit and differentiation, so justification of it is secondary to

the act itself. In the near future this and many other necessary interchanges are definitively justified via Gelfand-

Pettis (also called weak) integrals. In the present concrete situation elementary (but opaque) arguments could be

invoked, but we do not do this.

[40] In contrast to many sources, this compatibility is not about choosing representatives in [0, 2π) or anywhere else

for S 1. Rather, this compatibility would be required for a group G (here R), a discrete subgroup Γ (here 2πZ), and

the quotient G/Γ (here S1), whether or not that quotient is otherwise identifiable. This compatibility is a sort of

Fubini theorem. The usual Fubini theorem applies to products X × Y , whose quotients (X × Y )/X ≈ Y are simply

the factors, but another version applies to quotients that are not necessarily factors.
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Indeed, we can define integrals of functions on S1 by this compatibility relation, by expressing a continuous
function f on S1 as a periodicization (or automorphization)

f(x) =
∑
n∈Z

F (x+ 2πn)

of a compactly supported continuous function F on R, and define∫
S1

f(x) dx =

∫
R
F (x) dx

We still need to prove that this value is independent of the choice of F for given f .

The properties required of an integral on S1 are clear. Sadly, we are not in a good position (yet) either to
prove uniqueness or to give a construction as gracefully as these ideas deserve.

Postponing a systematic approach, we neglect any proof of uniqueness, and for a construction revert to an
ugly-but-tangible reduction of the problem to integration on an interval. That is, note that in the quotient
q : R→ R/2πZ = S1 the interval [0, 2π] maps surjectively, with the endpoints being identified (and no other

points identified). In traditional terminology, [0, 2π] is a fundamental domain [41] for the action of Z on R.
Then define the integral of f on S1 by∫

S1

f(x) dx =

∫ 2π

0

(f ◦ q)(x) dx

with usual (Lebesgue) measure on the unit interval. Verification of the compatibility with integration on R
is silly, from this viewpoint.

This (bad) definition does allow explicit computations, but makes translation invariance harder to prove,

since the unit interval gets pushed off itself by translation. But we can still manage the verification. [42]

Take y ∈ R, and compute∫
S1

f(x+ y) dx =

∫ 2π

0

(f ◦ q)(x+ y) dx =

∫ 2π−y

−y
(f ◦ q)(x) dx

=

∫ 0

−y
(f ◦ q)(x) dx+

∫ 2π−y

0

(f ◦ q)(x) dx =

∫ 0

−y
(f ◦ q)(x− 2π) dx+

∫ 2π−y

0

(f ◦ q)(x) dx

since (f ◦ q)(x) = (f ◦ q)(x− 2π) by periodicity. Then, replacing x by x+ 2π in the first integral, this is∫ 2π

2π−y
(f ◦ q)(x) dx+

∫ 2π−y

0

(f ◦ q)(x) dx =

∫ 2π

0

(f ◦ q)(x) dx

[41] The notion of fundamental domain for the action of a group Γ on a set X has an obvious appeal, at least that it

is more concrete than the notion of quotient Γ\X. However, it is rarely possible to determine an exact fundamental

domain, and one eventually discovers that the details are seldom useful even if this is possible. Instead, the quotient

should be treated directly.

[42] While suppressing our disgust.
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7. Hilbert space theory of Fourier series

The spaces of functions Ck(S1) are Banach spaces, not Hilbert spaces. [43] The geometry of Hilbert spaces
motivates finding a way to compare these Banach spaces with Hilbert spaces. Fourier series provide a good
device for this comparison.

As discussed above, we do not need an explicit or formulaic integral on S1, only the property of translation
invariance, choice of normalization, and the property of compatibility with integration on R. Nevertheless,
for expediency, we may integrate functions on S1 = R/2πZ by pulling back to R and integrating on [0, 1].

As usual, L2(S1) ≈ L2[0, 2π] can be described as the collection of measurable functions f on [0, 2π] such
that ∫ 2π

0

|f(x)|2 dx < +∞

modulo the equivalence relation of almost-everywhere equality, with the inner product

〈f, g〉 =

∫ 2π

0

f(x) g(x) dx

This definition makes L2[0, 2π] a Hilbert space. [44]

As observed in the previous section, the exponential functions

ψn(x) = einx (for n ∈ Z)

form an orthogonal set in L2(S1). It is not clear that they form an orthogonal basis. That is, we should
show that the finite linear combinations of the exponential functions ψn are dense in L2(S1). The Fourier
coefficients of an L2 function f are essentially inner products:

nth Fourier coefficient of f = f̂(n) =
1

2π
〈f, ψn〉 =

1

2π

∫ 2π

0

f(x) ψ(x) dx

The Fourier expansion of f in L2(S1) is

f ∼
∑
n∈Z

f̂(n) ψn =
∑
n∈Z

〈f, ψn〉
2π

ψn

[7.0.1] Remark: We do not write equality here, for several reasons, clarified in the sequel. We do expect
an L2 equality, although this is not it a priori related to pointwise equality, which is one of the major issue
addressed below.

[43] It is not trivial to prove that there are no Hilbert space structures on these spaces of functions, without knowing

the ramifications of the geometry of Hilbert spaces. Even when the given Banach space structure is not Hilbert, this

does not preclude existence of a different topology coming from a Hilbert structure. More to the point is that the

natural structures are Banach.

[44] The completeness requires proof. The kernel of the idea is that a Cauchy sequence of L2 functions has a

subsequence that converges pointwise off a set of measure 0. This gives a pointwise definition of the candidate

limit. A different definition of L2(S1), namely as the completion of Co(S1) with respect to the L2 metric has the

virtue that the completeness is defined into it, but the workload has been shifted to proving that these two definitions

are the same.
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[7.1] Completeness in L2(S1)

There are many different proofs that the normalized exponentials ψn/
√

2π form an orthonormal basis
in L2(S1). At one extreme, a completely analogous result holds for any compact abelian topological
group, without further structure. Even the abelian-ness can be dropped without much harm, though with
complications. Further, formulation and proof of that general result use methods of broad utility, so we will
give it later. For the moment, we take advantage of the particulars of the circle to give a 19th-century-style
argument. We do take this opportunity to introduce the notion of approximate identity (below).

[7.1.1] Theorem: The normalized exponentials ψn/
√

2π are an orthonormal basis for L2(S1).

[7.1.2] Remark: The proof does not prove that Fourier series converge pointwise (which they often do not).

[7.1.3] Remark: The not-necessarily-uniform pointwise convergence of Fourier series of C1 functions does
not instantly yield L2 convergence, nor does it instantly yield uniform pointwise convergence, which would
imply L2 convergence. Modifying the earlier pointwise convergence idea to achieve these goals motivates
introduction of an approximate identity in the proof.

Proof: By Urysohn’s Lemma (see appendix), the continuous functions Co(S1) are dense in L2(S1). Thus,
it suffices to prove that Co functions are approximable in L2 by finite sums of the exponentials ψn, and it
suffices to prove that finite sums of exponentials approximate Co functions in the Co topology: the total
measure of the space S1 is finite, so the L2 norm of a continuous function is dominated by its sup norm, and
density in sup norm implies density in L2 norm. [45]

We review the situation. As in the proof of not-necessarily-uniform pointwise convergence of Fourier series
for piecewise C1 functions, the N th partial sum of the Fourier series of a function f on S1 = R/2πZ can be

described usefully as an integral operator [46] by

1

2π

∑
|k|≤n

〈f, ψk〉ψk(x) =
1

2π

∫
S1

f(y)
∑
|k|≤n

ψk(y)ψk(x) dy =
1

2π

∫
S1

f(y)
∑
|k|≤n

ψk(x− y) dy

=
1

2π

∫
S1

f(y)
ψn+1(x− y)− ψ−n(x− y)

ψ1(x− y)− 1
dy

by summing finite geometric series. Let Kn(x) be the summed geometric series

Kn(x) =
ψn+1(x)− ψ−n(x)

ψ1(x)− 1
=

e(n+1)ix − e−inx

e−ix − 1
=

e(n+
1
2 )x − e−(n+ 1

2 )x

eix/2 − e−ix/2
=

sin(n+ 1
2 )x

sin x
2

so, dropping the 1/2π, ∑
|k|≤n

〈f, ψk〉ψk(x) =

∫
S1

f(y)Kn(x− y) dy

[45] Fortunately, proving that Co functions are approximable in the sup norm by finite sums of exponentials does not

require proving that Fourier series of continuous functions converge pointwise, which is not generally true. That is, we

are not compelled to prove that the partial sums of the Fourier series are the approximating sums, which admittedly

are the obvious candidate sequence. It turns out that this cannot possibly succeed. Examples of continuous functions

whose Fourier series diverge were suggested by Riemann, made rigorous by Weierstraß, and treated carefully in Fejér,

L, (1910) Beispiele stetiger Funktionen mit divergenter Fourierreihe Journal Reine Angew. Math. 137, pp. 1-5.

Existential arguments use the Baire category theorem.

[46] The notion of integral operator T is general, and without genuine precise definition. The form is that

Tf(x) =
∫
K(x, y) f(y) dy, and the function K(x, y) is the kernel of the operator. The class of functions in which the

kernel lies, and in which the input and output lie, varies enormously with context. Schwartz’ kernel theorem hugely

generalizes this idea.
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Granting that it is futile to prove that the partial sums converge pointwise for continuous functions, we
might try to see what related but different integral operators would work better.

This is our excuse to introduce approximate identities in this situation. [47] The rough idea of approximate
identity is of a sequence {ϕn} of functions ϕn approximating a point-mass measure [48] at 0 ∈ S1. Precisely,
a sequence of continuous functions ϕn on S1 is an approximate identity when

ϕn(x) ≥ 0 (for all n, x)

∫
S1

ϕn(x) dx = 1 (for all n)

and if for every ε > 0 and for every δ > 0 there is no such that for all n ≥ no∫
|x|<δ

ϕn(x) dx > 1− ε (equivalently,
∫
δ≤|x|< 1

2
ϕn(x) dx < ε)

where we use coordinates in R for S1 = R/2πZ. That is, the functions ϕn are non-negative, their integrals
are all 1, and their mass bunches up at 0 ∈ S1. It is not surprising that the integral operators made from an
approximate identity have a useful property:

[7.1.4] Claim: For f ∈ Co(S1) on S1 and for an approximate identity ϕn, in the topology of Co(S1),

lim
n

∫
S1

f(y)ϕn(x− y) dy = f(x)

Granting this claim, making an approximate identity out of finite sums of exponentials will prove that such
finite sums are dense in Co(S1). [49]

Proof: (of claim) Given f ∈ Co(S1), and given ε > 0, by uniform continuity of f on the compact S1, there
is δ > 0 such that

|f(x)− f(y)| < ε (for |x− y| < δ)

Take n large enough so that ∫
|x|<δ

ϕn(x) dx > 1− ε

Since the total mass of ϕn is 1,∫
S1

f(y)ϕn(x− y) dy − f(x) =

∫
S1

(f(y)− f(x))ϕn(x− y) dy

=

∫
|y−x|<δ

(f(y)− f(x))ϕn(x− y) dy +

∫
δ≤|y−x|≤ 1

2

(f(y)− f(x))ϕn(x− y) dy

The second integral is easily estimated by∣∣∣ ∫
δ≤|y−x|≤ 1

2

(f(y)− f(x))ϕn(x− y) dy
∣∣∣ ≤ 2|f |Co

∫
δ≤|y−x|≤ 1

2

ϕn(x− y) dy ≤ 2|f |Co · ε

[47] Versions of approximate identity are useful and important on topological groups generally.

[48] A point-mass measure at a point xo is a measure which gives the point xo measure 1 and gives a set not

containing xo measure 0. These are also called Dirac measures. It is easy to give a too-naive formulation of the

notion of approximate identity, which fails. In particular, the requirement that ϕn form an approximate identity

is strictly stronger than the condition that ϕn approach a Dirac measure in a distributional sense. Specifically, the

non-negativity condition on an approximate identity is indispensable.

[49] Similarly, to give S. Bernstein’s tangible proof of the Stone-Weierstraß theorem that polynomials are dense in

Co(K) for compact K in Rn, an approximate identity is exhibited consisting of polynomials.
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Estimation of the integral near 0 uses the positivity of the ϕn:∣∣∣ ∫
|y−x|<δ

(f(y)− f(x))ϕn(x− y) dy
∣∣∣ ≤ ε

∫
|y−x|<δ

ϕn(x− y) dy ≤ ε

∫
S1

ϕn(x− y) dy = ε · 1

This holds for all ε > 0 and uniformly in x, so the integrals approach f(x) in the Co topology, proving the
claim. ///

As noted above, to prove the completeness, we need only exhibit an approximate identity made from finite
sums of exponentials. A failing of the Dirichlet kernels

Kn(x) =
e(n+

1
2 )x − e−(n+ 1

2 )x

eix/2 − e−ix/2
=

sin(n+ 1
2 )x

sin x
2

that yield the partial sums is that these kernels are not non-negative. Still, the fact (proven above) that a
stronger hypothesis of C1-ness gives a limited result in the direction we want suggests that the masses of the
Kn do bunch up near 0. Indeed, the expression for Kn in terms of sines does show that these functions are
real-valued. Thus, a plausible choice for an approximate identity ϕn is the (essentially) Fejér kernels

ϕn = K2
n × (constant depending on n)

with constant chosen to give total mass 1. Computing directly in terms of exponentials, expanding the
square of the sum, ∫

S1

Kn(x)2 dx =

∫
S1

(
e−inx + . . .+ einx

)2
dx

=

∫
S1

e−2nix + 2e−(2n−1)ix + 3e−(2n−2)ix + 4e−(2n−3)ix + . . .+ (2n+ 1) · 1 + . . .+ 2e(2n−1)ix + e2nix dx

=

∫
S1

2n+ 1 dx = 2π · (2n+ 1)

since all the non-trivial exponentials integrate to 0. Thus, take

ϕn(x) =
Kn(x)2

2π · (2n+ 1)

The discussion so far gives non-negativity and total mass 1. We must show that the mass of the ϕn’s bunches
up at 0. For this, revert to the expression for Kn in terms of sines. For δ ≤ |x| ≤ π,

ϕn(x) =
sin2(n+ 1

2 )x

2π(2n+ 1) sin2 x
2

≤ 1

2π(2n+ 1)x2
(since |sin x

2 | ≥ |
x
2 | for |x| ≤ π)

For x bounded away from 0 we get inequalities such as

0 ≤ ϕn(x) ≤ 1

2π(2n+ 1)x2
≤ 1

2π(2n+ 1)n−2/3
≤ 1

2π(2n1/3 + n−2/3)
≤ 1

2πn1/3
(for |x| ≥ n−1/3)

This sup-norm estimate for ϕn on the part of S1 covered by n−1/3 ≤ |x| ≤ π gives∫
n−1/3≤|x|≤π

ϕn(x) dx ≤ 2π · 1

2π n1/3
≤ 1

n1/3

Thus, given ε > 0 and δ > 0, take n large enough so that n > (2ε)3, and n > δ3, to meet the mass-
concentration criterion for approximate identities. ///
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Therefore, having shown that the exponential functions form an orthonormal basis, for f ∈ L2[0, 1] we have
an L2-equality

f =
∑
n

〈f, ψn〉
2π

ψn =
∑
n

f̂(n)ψn (in L2(S1))

and the Plancherel-Parseval theorem from general Hilbert space theory gives a Plancherel-Parseval theorem
here:

|f |2 =
∑
n

∣∣∣ 〈f, ψn〉
2π

∣∣∣2 =
∑
n

|f̂(n)|2

[7.1.5] Remark: Again, L2 convergence says nothing directly about pointwise convergence. Nor is there
anything to deny the possibility that a Fourier series does converge at a point, but converges to a value
different from the value of f there. For example, we proved pointwise convergence of C1 functions, but what
about Co?

[7.1.6] Remark: Fourier already worried about pointwise convergence of Fourier series, as did Cantor.
From a later viewpoint than theirs, since L2 functions are only defined almost everywhere, pointwise
convergence of a Fourier series would distinguish a special function in the equivalence class in L2[0, 1], which

might be suspicious. Nevertheless, L. Carleson showed [50] that, given
∑
n |cn|2 < ∞, the Fourier series∑

n cn e
inx converges almost everywhere. Thus, given f ∈ L2[0, 2π], the Fourier series of f does converge

almost everywhere to f , and does distinguish an element in that almost-everywhere-equal equivalence class.
Fortunately, this difficult result does not play a role here.

8. Levi-Sobolev inequalities, Levi-Sobolev imbeddings

The simplest L2 theory of Fourier series addresses neither continuity nor differentiability. Yet it would be
advantageous on general principles to be able to talk about differentiability in the context of Hilbert spaces,
since Hilbert spaces have easily understood dual spaces. Beppo Levi, Frobenius, and Sobolev made useful
comparisons. The idea is to compare Ck norms to norms coming from Hilbert spaces whose inner products
refer to derivatives, the Levi-Sobolev spaces.

[8.1] Levi-Sobolev inequalities

First, we have an easy estimate for a variant Ck norm:∣∣∣∣∣∣
∑
|n|≤N

cn e
inx

∣∣∣∣∣∣
Ck

= sup
0≤j≤k

sup
x

∣∣∣∣∣∣
∑
|n|≤N

cn (in)j einx

∣∣∣∣∣∣
C

≤
∑
|n|≤N

|cn| · (1 + n2)k/2

all for elementary reasons. [51] Perhaps surprisingly, rather try to directly obtain a sup norm estimate on
this sum, Cauchy-Schwarz-Bunyakowsky is invoked: for any s ∈ R∣∣∣∣∣∣

∑
|n|≤N

cn e
inx

∣∣∣∣∣∣
Ck

≤
∑
|n|≤N

|cn| · (1 + n2)s/2 · 1

(1 + n2)(s−k)/2

≤

 ∑
|n|≤N

|cn|2 · (1 + n2)s

1/2

·

 ∑
|n|≤N

1

(1 + n2)s−k

1/2

[50] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.

[51] The awkward expression (1+n2)1/2 is approximately n. However, for n = 0 we cannot divide by n, and replacing

n by (1 + n2)1/2 is the traditional device stunt to avoid this annoyance.
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Convergence of the elementary sum is easy to understand:

∑
n∈Z

1

(1 + n2)s−k
< +∞ (for s > k + 1

2 )

Thus, for any s > k + 1
2 we have a Levi-Sobolev inequality∣∣∣∣∣∣

∑
|n|≤N

cn ψn

∣∣∣∣∣∣
Ck

≤

∑
n∈Z

1

(1 + n2)s−k

1/2

·

 ∑
|n|≤N

|cn|2 · (1 + n2)s

1/2

≤

∑
n∈Z

1

(1 + n2)s−k

1/2

·

∑
n∈Z
|cn|2 · (1 + n2)s

1/2

which is summarized as∣∣∣∣∣∣
∑
n∈Z

cn ψn

∣∣∣∣∣∣
Ck

≤

∑
n∈Z

1

(1 + n2)s−k

1/2

·

∑
n∈Z
|cn|2 · (1 + n2)s

1/2

(for s > k + 1
2 )

Existence of this comparison makes the right side interesting. Taking away from the right-hand side the
uniform constant

ωs−k =

∑
n∈Z

1

(1 + n2)s−k

1/2

gives the sth Levi-Sobolev norm

sth Levi-Sobolev norm =
∣∣∣∑
n∈Z

cn ψn

∣∣∣
Hs

=

∑
n∈Z
|cn|2 · (1 + n2)s

1/2

Paraphrasing, we have proven the dominance relation

| |Ck ≤ ωs−k · | |Hs (for any s > k + 1
2 )

[8.2] Levi-Sobolev imbeddings

For s ≥ 0, the sth Levi-Sobolev space is [52]

Hs(S1) = {f ∈ L2(S1) :
∑
n

|f̂(n)|2 · (1 + n2)s < +∞}

The inner product on Hs(S1) is〈∑
n

an ψn,
∑
n

bn ψn

〉
= 2π

∑
n

an bn (1 + n2)s

[52] This definition is fine for s ≥ 0, but not sufficient for s < 0. We will give the broader definition below. Keep in

mind that L2(S1) contains Co(S1) and all the Ck(S1)’s.
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[8.2.1] Remark: This definition of Hs(S1) defines a useful space of functions or generalized functions only
for s ≥ 0, since for s < 0 the constraint f ∈ L2(S1) is stronger (from the Plancherel theorem) than the
condition defining Hs(S1) in the previous display.

[8.2.2] Remark: The 0th Levi-Sobolev space is just L2(S1).

[8.2.3] Corollary: For s > k + 1
2 there is a continuous inclusion

Hs(S1) ⊂ Ck(S1)

Proof: For s > k + 1
2 , whenever a Fourier series has a finite Levi-Sobolev norm

∣∣∣∑
n

cn ψn

∣∣∣
Hs

=

∑
n∈Z
|cn|2 · (1 + n2)s

1/2

< +∞

the partial sums of the Fourier series are Cauchy in Hs, hence Cauchy in Ck, so converge in the Banach
space Ck: ∑

n

cn ψn = Ck function on S1

Proof: Apply the Levi-Sobolev inequality |f |Ck ≤ ω · |f |Hs to finite linear combinations f of exponentials.
Such finite linear combinations are Ck, and the inequality implies that an infinite sum of such, convergent
in Hs(S1), has sequence of partial sums convergent in Ck(S1). That is, by the completeness of Ck(S1), the
limit is still k times continuously differentiable. Thus, we have the containment. Given the containment, the
inequality of norms implies the continuity of the inclusion. ///

[8.3] Levi-Sobolev Hilbert spaces

[8.3.1] Claim: The sth Levi-Sobolev space Hs(S1) (with 0 ≤ s ∈ R) is a Hilbert space. In particular, the
sequences of Fourier coefficients of functions in Hs(S1) are all two-sided sequences {cn : n ∈ Z} of complex
numbers meeting the condition ∑

n

|cn|2 · (1 + n2)s < +∞

[8.3.2] Remark: It is clear that the exponentials ψn are an orthogonal basis for Hs(S1), although their
norms depend on the index s. In particular, the collection of finite linear combinations of exponentials is
dense in Hs(S1).

[8.3.3] Remark: Again, we do want to define these positively-indexed Levi-Sobolev spaces as subspaces of
genuine spaces of functions, not as sequences of Fourier coefficients meeting the condition, and then prove
the second assertion of the claim. This does leave open, for the moment, the question of how to define
negatively-indexed Levi-Sobolev spaces.

Proof: In effect, this is the space of L2 functions on which the Hs-norm is finite. If we prove the second
assertion of the claim, then invoke the usual proof that L2 spaces are complete to know that Hs(S1) is
complete, since it is simply a weighted L2-space. Given a two-sided sequence {cn} of complex numbers such
that ∑

n

|cn|2 · (1 + n2)s < +∞

since s ≥ 0, ∑
n

|cn|2 < +∞
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and, by Plancherel, ∑
n

cn ψn ∈ L2(S1)

This shows that Hs(S1) is a Hilbert space for s ≥ 0. ///

[8.3.4] Remark: Insisting on viewing L2(S1) as equivalence classes of functions may mislead us into making a
needlessly complicated assertion about Levi-Sobolev imbeddings Hs(S1) ⊂ Ck(S1) for s > k+ 1

2 , by insisting
that Hs(S1) consists of almost-everywhere equivalence classes of L2(S1) functions, only one of which is in
Ck(S1). This is not a genuine issue.

[8.4] Levi-Sobolev norms in terms of derivatives

[8.4.1] Remark: Apart from having the virtue of giving inner-product structures, the expressions appearing
in these Levi-Sobolev norms are natural because they have meaning in terms of L2-norms of derivatives. For
f =

∑
cn ψn ∈ Ck(S1), by Plancherel

(norm via derivatives) = |f |2 + |f ′|2 + |f ′′|2 + . . .+ |f (k)|2

=
∑
n

|cn|2 · (1 + n2 + n4 + . . .+ n2k) ≤
∑
n

|cn|2 · (1 + n2)k

Conversely,

(1 + n2)k ≤ Ck · (1 + n2 + n4 + n6 + . . .+ n2k) (for some constant Ck)

so

(norm via Fourier coefficients) =
∑
n

|cn|2 · (1 + n2)k ≤ Ck ·
(
|f |2 + |f ′|2 + |f ′′|2 + . . .+ |f (k)|2

)
Thus, the two definitions of Levi-Sobolev norms, in terms of weighted L2 norms of Fourier series, or in
terms of L2 norms of derivatives, give comparable Hilbert space structures. In particular, the topologies are
identical.

[8.4.2] Corollary: For k ≥ 0,
Ck(S1) ⊂ Hk(S1)

Proof: For k = 0, the assertion is that Co(S1) ⊂ L2(S1), which holds because S1 is compact. Similarly, the
relevant derivatives of f ∈ Ck(S1) are in L2(S1), so f ∈ Hk(S1). ///

[8.4.3] Remark: One can work out the corresponding inequalities for Fourier series in several variables,
proving that (k + n

2 + ε)-fold L2 differentiability (for any ε > 0) in dimension n is needed to assure k-fold
continuous differentiability. This is L2 Levi-Sobolev theory.

[8.5] Uniform pointwise convergence, convergence in Ck(S1)

At this moment it is very easy to give a straightforward, if not sharp, result about convergence of Ck functions
on S1, via the Levi-Sobolev spaces:

[8.5.1] Corollary: The Fourier series of f ∈ Ck(S1) converges to f in Ck−1(S1).

Proof: A function in Ck(S1) is in the Hilbert space Hk(S1), meaning that the finite partial sums of the
Fourier expansion converge to f in Hk(S1). The Hk(S1) norm dominates that of Ck−1(S1), so the Fourier
series converges to f in Ck−1(S1). ///
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[8.5.2] Remark: It may seem mildly peculiar that the Fourier series of a Ck function can converge to it
only in Ck−1.

[8.6] L2-differentiation

[8.6.1] Claim: For every s ≥ 0, the differentiation map

d

dx
: finite Fourier series −→ finite Fourier series

is continuous when the source is given the Hs(S1) topology and the target is given the Hs−1(S1) topology.

Proof: This continuity is by design:∣∣∣ d
dx

∑
|n|≤N

cn e
inx
∣∣∣2
Hs−1

=
∣∣∣ ∑
|n|≤N

cn in e
inx
∣∣∣2
Hs−1

≤
∑
|n|≤N

|ncn|2 · (1 + n2)s−1

≤
∑
|n|≤N

|cn|2 · (1 + n2)s =
∣∣∣ ∑
|n|≤N

cn e
inx
∣∣∣2
Hs

proving the continuity on finite Fourier series. ///

Therefore, we can extend d
dx by continuity to obtain continuous linear maps

(L2-differentiation) = (extension by continuity of)
d

dx
: Hs(S1) −→ Hs−1(S1)

[8.6.2] Remark: In these terms, extra L2-differentiability is needed to assure comparable classical continuous
differentiability. Specifically, (k+ 1

2 + ε)-fold L2-differentiability (for any ε > 0) suffices for k-fold continuous
differentiability, in this one-dimensional example. The comparable computations on (S1)×n show that the
gap widens as the dimension grows.

9. C∞ = limCk = limHs = H∞

For larger purposes, the specific comparisons of indices in the containments

Hs(S1) ⊂ Ck(S1) (for s > k + 1
2 )

Ck(S1) ⊂ Hs(S1) (for k ≥ s)

are secondary, since we are more interested in smooth functions C∞(S1) than functions with limited
continuous differentiability.

Thus, the point is that the Levi-Sobolev spaces and Ck(S1) spaces are cofinal under taking descending
intersections. That is, letting H∞(S1) be the intersection of all the Hs(S1), as sets we have

C∞(S1) =
⋂
k

Ck(S1) =
⋂
s≥0

Hs(S1) = H∞(S1)

Since descending nested intersections are limits, the topologies behave well for trivial reasons:

[9.0.1] Theorem: As topological vector spaces

C∞(S1) = lim
k
Ck(S1) = lim

s≥0
Hs(S1) = H∞(S1)
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Proof: The cofinality of the Ck’s and the Hs’s gives a natural isomorphism of the two limits, since they
can be combined in a larger limit in which each is cofinal. ///

Again, in general duals of limits are not colimits, but we did show earlier that the dual of a limit of Banach
spaces is the colimit of the duals of the Banach spaces. Thus,

[9.0.2] Corollary: The space of distributions on S1 is

C∞(S1)∗ = colimkC
k(S1)∗ = colims≥0H

s(S1)∗ = H∞(S1)∗

(and the duals Hs(S1)∗ admit further explication, below). ///

Expressing C∞(S1) as a limit of the Hilbert spaces Hs(S1), as opposed to its more natural expression as a

limit of the Banach spaces Ck(S1), is convenient when taking duals, since by the Riesz-Fischer theorem [53]

we have explicit expressions for Hilbert space duals. We exploit this possibility below.

10. Distributions, generalized functions, again

We will see that distributions on S1 have Fourier expansions, greatly facilitating their study. [54]

The exponential functions ψn are in C∞(S1), so for any distribution u we can compute Fourier coefficients
of u by

(nth Fourier coefficient of u) = û(n) =
1

2π
· u(ψ−n)

Write

u ∼
∑
n

û(n) · ψn

even though pointwise convergence of the indicated sum is certainly not expected. Define Levi-Sobolev spaces
for all s ∈ R by

Hs(S1) = {u ∈ C∞(S1)∗ :
∑
n

|u(ψ−n)|2 · (1 + n2)s <∞}

and the sth Levi-Sobolev norm |u|Hs is

|u|2Hs =
∑
n

|u(ψ−n)|2 · (1 + n2)s

For 0 ≤ s ∈ Z, this definition is visibly compatible with the previous definition via derivatives.

[10.0.1] Remark: The formation of the Levi-Sobolev spaces of both positive and negative indices portrays
the classical functions of various degrees of (continuous) differentiability together with distributions of various
orders as fitting together as comparable objects. By contrast, thinking only in terms of the spaces Ck(S1)
does not immediately suggest a comparison with distributions.

[53] The Riesz-Fischer theorem asserts that the (continuous) dual V ∗ of a Hilbert space V is C-conjugate linearly

isomorphic to V . The isomorphism from V to V ∗ attaches the linear functional v → 〈v, w〉 to an element w ∈ V .

Since our hermitian inner products 〈, 〉 are conjugate-linear in the second argument, the map w → 〈 , w〉 is conjugate

linear.

[54] In contrast, discussion of distributions on the real line R is more complicated, due to the non-compactness of R.

Not every distribution on R is the Fourier transform of a function. Distributions which admit Fourier transforms,

tempered distributions, constitue a proper subset of all distributions on R.
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For convenience, define a weighted version `2,s of (a two-sided version of) the classical Hilbert space `2 by
[55]

`2,s = {{cn : n ∈ Z} :
∑
n∈Z
|cn|2 · (1 + n2)s <∞}

with the weighted version of the usual hermitian inner product, namely,

〈{cn}, {dn}〉 =
∑
n∈Z

cn dn · (1 + n2)s

[10.0.2] Claim: The complex bilinear pairing

〈, 〉 : `2,s × `2,−s −→ C

by

〈{cn}, {dn}〉 =
∑
n

cn d−n

identifies these two Hilbert spaces as mutual duals, where

`2,−s −→ (`2,s)∗ by {dn} → λ{dn} where λ{dn}({cn}) =
∑
n

cn d−n

[10.0.3] Remark: The minus sign in the subscript in the last formula is not the main point, but is a
necessary artifact of our change from a hermitian form to a complex bilinear form. It is (thus) necessary to
maintain compatibility with the Plancherel theorem for ordinary functions.

Proof: The Cauchy-Schwarz-Bunyakowsky inequality gives the continuity of the functional attached to {dn}
in `2,−s by ∣∣∣∑

n

cn · d−n
∣∣∣ ≤ ∑

n

|cn| (1 + n2)s/2 · |d−n| (1 + n2)−s/2

≤

(∑
n

|cn|2 (1 + n2)s

)1/2

·

(∑
n

|dn|2 (1 + n2)−s

)1/2

= |{cn}|`2,s · |{dn}|`2,−s

proving the continuity. [56] To prove the surjectivity we adapt the Riesz-Fischer theorem by a
renormalization. That is, given a continuous linear functional λ on `2,s, by Riesz-Fischer there is {an} ∈ `2,s
such that

λ({cn}) = 〈{cn}, {an}〉`2,s =
∑
n

cn · an · (1 + n2)s

Take
dn = a−n · (1 + n2)s

Check that this sequence of complex numbers is in `2,−s, by direct computation, using the fact that
{an} ∈ `2,s,∑

n

|dn|2 · (1 + n2)−s =
∑
n

|a−n · (1 + n2)s|2 · (1 + n2)−s =
∑
n

|an|2 · (1 + n2)s < +∞

[55] The Hilbert space `2 is the collection of sequences {a1, a2, . . .} with
∑
|ai|2 <∞.

[56] Continuity of a linear functional λ on a Banach space B is equivalent to an estimate |λ(b)|C ≤ C · |b|B for some

constant C.
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Thus, `2,−s is (isomorphic to) the dual of `2,s. ///

[10.0.4] Claim: The map u → {û(n)} on Hs(S1) by taking Fourier coefficients is a Hilbert-space
isomorphism

Hs(S1) ≈ `2,s

Proof: That the two-sided sequence of Fourier coefficients u(ψ−n) is in `2,s is part of the definition of
Hs(S1). The more serious question is surjectivity.

Let {cn} ∈ `2,s. For s ≥ 0, the sth Levi-Sobolev norm dominates the 0th, so distributions in Hs(S1) are at
least L2(S1)-functions. The definition of Hs(S1) in this case makes Hs(S1) a Hilbert space, and we directly
invoke the Plancherel theorem, using the orthonormal basis ψn√

2π
· (1 + n2)−s/2 for Hs(S1). This gives the

surjectivity Hs(S1)→ `2,s for s ≥ 0.

For s < 0, to prove the surjectivity, for {cn} in `2,s we will define a distribution u lying in Hs(S1), by

u(f) =
∑
n

f̂(n) · c−n (f ∈ C∞(S1))

By Cauchy-Schwarz-Bunyakowsky,

|
∑
n

f̂(n) · c−n| ≤
∑
n

|f̂(n)| (1 + n2)−s/2 · |cn| (1 + n2)s/2

≤

(∑
n

|f̂(n)|2 (1 + n2)−s

)1/2

·

(∑
n

|cn|2 (1 + n2)s

)1/2

= |f |H−s · |{cn}|`2,s

This shows that u is a continuous linear functional on H−s(S1). For s < 0, the test functions C∞(S1) imbed
continuously into H−s(S1), so u gives a continuous functional on C∞(S1), so is a distribution. This proves
that the Fourier coefficient map is a surjection to `2,s for s < 0. ///

[10.0.5] Remark: After this preparation, the remainder of this section is completely unsurprising. The
following corollary is the conceptual point of this story.

[10.0.6] Corollary: For any s ∈ R, the complex bilinear pairing

〈, 〉 : Hs ×H−s → C by f × u→ 〈f, u〉 =
∑
n

f̂(n) · û(−n)

gives an isomorphism
H−s ≈ (Hs)∗

by sending u ∈ H−s to λu ∈ (Hs)∗ defined by

λu(f) = 〈f, u〉 (for f ∈ Hs(S1))

[10.0.7] Remark: The pairing of this last claim is unsymmetrical: the left argument is from Hs while the
right argument is from H−s.

Proof: This pairing via Fourier coefficients is simply the composition of the maps Hs(S1) ≈ `2,s and
H−s(S1) ≈ `2,−s with the pairing of `2,s and `2,−s given just above. ///

[10.0.8] Corollary: The space of all distributions on S1 is

distributions = C∞(S1)∗ =
⋃
s≥0

Hs(S1)∗ =
⋃
s≥0

H−s(S1) = colims≥0H
−s(S1)
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thus expressing C∞(S1)∗ as an ascending union of Hilbert spaces. ///

[10.0.9] Corollary: A distribution u ∼
∑
n cn ψn can be evaluated on f ∈ C∞(S1) by

u(f) =
∑
n

f̂(n) · û(−n)

Proof: Since u lies in some H−s(S1), it gives a continuous functional on Hs(S1), which contains C∞(S1).
The Plancherel-like evaluation formula above gives the equality. ///

A collection of Fourier coefficients {cn} is of moderate growth when there is a constant C and an exponent
N such that

|cn| ≤ C · (1 + n2)N (for all n ∈ Z)

[10.0.10] Corollary: Let {cn} be a collection of complex numbers of moderate growth. Then there is a
distribution u with those as Fourier coefficients, that is, there is u with

u(ψ−n) = cn

Proof: For constant C and exponent N such that |cn| ≤ C · (1 + n2)N ,∑
n

|cn|2 · (1 + n2)−(2N+1) ≤
∑
n

C2 · (1 + n2)2N · (1 + n2)−(2N+1) = C2 ·
∑
n

(1 + n2)−1 < ∞

That is, from the previous discussion, the sequence gives an element of H−(2N+1)(S1) ⊂ C∞(S1)∗. ///

[10.0.11] Corollary: For u ∼
∑
n cn ψn ∈ Hs(S1) the derivative (for any s ∈ R) is

u′ ∼
∑
n

in · cn · ψn ∈ Hs−1

Proof: Invoke the definition (compatible with integration by parts) of the derivative of distributions, and

integrating by parts to see that f̂ ′(n) = in · f̂(n) for f ∈ C∞(S1) = H∞(S1),

u′(f) = −u(f ′) = −
∑
n

f̂ ′(n) · û(−n) = −
∑
n

in f̂(n) · û(−n) =
∑
n

f̂(n) · −in û(−n)

as claimed. The Fourier coefficients −in · û(n) do satisfy∑
n

|in û(n)|2 · (1 + n2)s−1 ≤
∑
n

(1 + n2) |û(n)|2 · (1 + n2)s−1 =
∑
n

|û(n)|2 · (1 + n2)s = |u|2Hs <∞

which proves that the differentiation maps Hs to Hs−1 continuously. ///

[10.0.12] Remark: In the latter proof the sign in the subscript in the definition of the pairing `2,s × `2,−s
was essential.

[10.0.13] Corollary: The collection of finite linear combinations of exponentials ψn is dense in every Hs(S1),
for s ∈ R. In particular, C∞(S1) is dense in every Hs(S1), for s ∈ R.

Proof: The exponentials are an orthogonal basis for every Levi-Sobolev space. ///
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[10.0.14] Remark: The topology of colimit of Hilbert spaces is the finest of several reasonable topologies
on distributions. Density in a finer topology is a stronger assertion than density in a coarser topology.

11. The provocative example explained

The confusing example of the sawtooth function is clarified in the context we’ve developed. By now, we
know that Fourier series whose coefficients satisfy sufficient decay conditions are differentiable. Even when
the coefficients do not decay, but only grow moderately, the Fourier series is that of a generalized function.
In other words, we can (nearly) always differentiate Fourier series term by term, as long as we can tolerate
the outcome being a generalized function, rather than necessarily a classical function.

Again, s(x) is the sawtooth function

s(x) = x− π (for 0 ≤ x < 2π)

made periodic by demanding s(x+ 2πn) = s(x) for all n ∈ Z, so

s(x) = x− 2π · [[ x
2π

]] − π (for x ∈ R)

where [[x]] is the greatest integer less than or equal x. Away from 2πZ, this function is infinitely differentiable,
with derivative 1. At integers it jumps down from value to π to value −π. We do not attempt to define a
value at 2πZ.

We want to differentiate this function compatibly with integration by parts, and compatibly with term-by-
term differentiation of Fourier series.

The sawtooth function is well-enough behaved to give a distribution by integrating against it. Therefore, as
we saw above, it can be differentiated as a distribution, and be correctly differentiated as (as a distribution)
by differentiating its Fourier expansion termwise.

A earlier, Fourier coefficients are computed by integrating against e−inx

1

2π

∫ 1

0

s(x) · e−inx dx =


1

−in
(for n 6= 0)

0 (for n = 0)

Thus, at least as a distribution, its Fourier expansion is

s(x) = i
∑
n 6=0

1

n
· einx

The series does converge pointwise to s(x) for x away from (images of) integers, as we proved happens at
left and right differentiable points for piecewise Co functions.

We are entitled to differentiate, at worst within the class of distributions, within which we are assured of
a reasonable sense to our computations. Further, we are entitled (for any distribution) to differentiate the
Fourier series term-by-term. That is, as distributions,

s′(x) = −
∑
n 6=0 e

inx

s′′(x) = −
∑
n 6=0 in e

inx

· · ·

s(k)(x) = −
∑
n 6=0 (in)k−1 einx
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and so on, just as successive derivatives of smooth functions f(x) =
∑
n cn e

inx are obtained by termwise
differentiation

f (k)(x) =
∑
n 6=0

(in)k cn e
inx

The difficulty of interpreting the right-hand side of the Fourier series for s(k) as having pointwise values is
irrelevant.

More to the point, these Fourier series are things to integrate smooth functions against, by an extension of the
Plancherel formula for inner products of L2 functions. Namely, for any smooth function f(x) ∼

∑
n cn e

inx,
the imagined integral of f against s(k) should be expressible as the sum of products of Fourier coefficients

imagined 〈f, s(k)〉 =
∑
n 6=0

cn ·
(

(in)k

−in

)conj

(where α→ αconj is complex conjugation) and the latter expression should behave well when rewritten in a
form that refers to the literal function s. Indeed,

∑
n 6=0

cn ·
(

(in)k

−in

)conj

= (−1)k
∑
n 6=0

(in)k cn ·
(

1

−in

)conj

= (−1)k
∫
S1

f (k)(x) s(x) dx

by the Plancherel theorem applied to the L2 functions f (k) and s. Let u be the distribution given by
integration against s. Then, by the definition of differentiation of distributions, we have computed that

(−1)k
∫
S1

f (k)(x) s(x) dx = (−1)ku(f (k)) = u(k)(f)

It is in this sense that the sum
∑
n 6=0 cn ·

(in)k

−in is integration of s against f .

Further, for f a smooth function with support away from the discontinuities of s, it is true that u′′(f) = 0,
giving s′′ a vague pointwise sense of being 0 away from the discontinuities of s. This was clear at the outset,
but now is given precise meaning.

Thus, as claimed at the outset of the discussion of functions on the circle, we can differentiate s(x)
legitimately, and the differentiation of the Fourier series of the sawtooth function s(x) correctly represents
this differentiation, viewing s(x) and its derivatives as distributions.
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12. Appendix: products and limits of topological vector spaces

Here we carry out the diagrammatical proof that products and limits of topological vector spaces exist, and
are locally convex when the factors or limitands are locally convex. Nothing surprising happens.

[12.0.1] Claim: Products and limits of topological vector spaces exist. In particular, limits are closed
(linear) subspaces of the corresponding products. When the factors or limitands are locally convex, so is the
product or limit.

[12.0.2] Remark: Part of the point is that products and limits of locally convex topological vector spaces in
the larger category of not-necessarily locally convex topological vector spaces are nevertheless locally convex.
That is, enlarging the category in which we take test objects does not change the outcome, in this case. By
contrast, coproducts and colimits in general are sensitive to local convexity of the test objects. [57]

Proof: After we construct products, limits are constructed as closed subspaces of them.

Let Vi be topological vector spaces. We claim that the topological-space product V = ΠiVi (with projections
pi) (with the product topology) is a topological vector space product. Let αi : Vi × Vi → Vi be the addition
on Vi. The family of composites αi ◦ (pi × pi) : V × V → Vi induces a map α : V × V → V as in

V × V

pi×pi
��

α //___ V

pi

��
Vi × Vi αi

// Vi

This defines what we will show to be a vector addition on V . Similarly, the scalar multiplications
si : C× Vi → Vi composed with the projections pi : V → Vi give a family of maps

si ◦ (1× pi) : C× V −→ Vi

which induce a map s : C× V → V which we will show to be a scalar multiplication on V . That these maps
are continuous is given us by starting with the topological-space product.

That is, we must prove that vector addition is commutative and associative, that scalar multiplication is
associative, and that the two have the usual distributivity. All these proofs are the same in form. For
commutativity of vector addition, consider the diagram

Vi × Vi
v×w→v+w // Vi

V × V

pi×pi
99sssssssss

v×w→w×v
��

v×w→v+w
**e b _ \ Y V

v×w→w+v
44Y \ _ b e h V

pi
??�������

pi ��@
@@

@@
@@

@

V × V
pi×pi // Vi × Vi

v×w→w+v // Vi

The upper half of the diagram is the induced-map definition of vector addition on V , and the lower half is
the induced map definition of the reversed-order vector addition. The commutativity of addition on each
Vi implies that going around the top of the diagram from V × V to Vi yields the same as going around the
bottom. Thus, the two induced maps V × V → V must be the same, since induced maps are unique.

[57] For example, uncountable coproducts do not exist among not-necessarily locally convex topological vector spaces,

essentially because the not-locally-convex spaces `p with 0 < p < 1 exist.
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The proofs of associativity of vector addition, associativity of scalar multiplication, and distributivity, use
the same idea. Thus, products of topological vector spaces exist.

We should not forget to prove that the product is Hausdorff, since we implicitly require this of topological
vector spaces. This is immediate, since a (topological space) product of Hausdorff spaces is readily shown
to be Hausdorff.

Consider now the case that each Vi is locally convex. By definition of the product topology, every
neighborhood of 0 in the product is of the form ΠiUi where Ui is a neighborhood of 0 in Vi, and all
but finitely many of the Ui are the whole Vi. Since Vi is locally convex, we can shrink every Ui that is not Vi
to be a convex open containing 0, while each whole Vi is convex. Thus, the product is locally convex when
every factor is.

To construct limits, reduce to the product.

[12.0.3] Claim: Let Vi be topological vector spaces with transition maps ϕi : Vi → Vi−1. The limit
V = limi Vi exists, and, in particular, is the closed linear subspace (with subspace topology) of the product
ΠiVi (with projections pi) defined by the (closed) conditions

lim
i
Vi = {v ∈ ΠiVi : (ϕi ◦ pi)(v) = pi−1(v), for all i}

Proof: (of claim) Constructing the alleged limit as a closed subspace of the product immediately yields the
desired properties of vector addition and scalar multiplication, as well as the Hausdorff-ness. What we must
show is that the construction does function as a limit.

Given a compatible family of continuous linear maps fi : Z → Vi, there is induced a unique continuous linear
map F : Z → ΠiVi to the product, such that pi ◦ f = fi for all i. The compatibility requirement on the fi
exactly asserts that f(Z) sits inside the subspace of ΠiVi defined by the conditions (ϕi ◦ pi)(v) = pi−1(v).
Thus, f maps to this subspace, as desired.

Further, for all limitands locally convex, we have shown that the product is locally convex. The local
convexity of a linear subspace (such as the limit) follows immediately. ///

13. Appendix: Fréchet spaces and limits of Banach spaces

A larger class of topological vector spaces arising in practice is the class of Fréchet spaces. In the present
context, we can give a nice definition: a Fréchet space is a countable limit of Banach spaces. [58] Thus, for
example,

C∞(S1) =
⋂
k

Ck(S1) = lim
k
Ck(S1)

is a Fréchet space, by (this) definition.

Despite its advantages, the present definition is not the usual one. [59] We make a comparison, and elaborate

[58] Of course, it suffices that a limit have a countable cofinal subfamily.

[59] A common definition, with superficial appeal, is that a Fréchet space is a complete (invariantly) metrized space

that is locally convex. This has the usual disadvantage that there are many different metrics that can give the

same topology. This also ignores the manner in which Fréchet spaces usually arise, as countable limits of Banach

spaces. There is another common definition that does halfway acknowledge the latter construction, namely, that a

Fréchet space is a complete topological vector space with topology given by a countable collection of seminorms. The

latter definition is essentially equivalent to ours, but requires explanation of the suitable notion of completeness in a

not-necessarily metric situation, as well as explanation of the notion of seminorm and how topologies are specified

by seminorms. We skirt the latter issues for the moment.
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on the features of Fréchet spaces.

A metric d(, ) on a vector space V is invariant (implicitly, under addition), when

d(x+ z, y + z) = d(x, y) (for all x, y, z ∈ V )

All metrics we’ll care about on topological vector spaces will be invariant in this sense.

[13.0.1] Claim: A Fréchet space is locally convex and complete (invariantly) metrizable. [60]

Proof: Let V = limiBi be a countable limit of Banach spaces Bi, where ϕi : Bi → Bi−1 are the transition
maps and pi : V → Bi are the projections. From the appendix, the limit is a closed linear subspace of the
product, and the product is the cartesian product with the product topology and component-wise vector
addition. Recall that a product of a countable collection of metric spaces is metrizable, and is complete if
each factor is complete. A closed subspace of a complete metric space is complete metric. Thus, limiBi is
complete metric.

As proven in the previous appendix, any product or limit of locally convex spaces is locally convex, whether
or not it has a countable cofinal family. Thus, the limit is Fréchet. ///

Addressing the comparison between local convexity and limits of Banach spaces,

[13.0.2] Theorem: Every locally convex topological vector space is a subspace of a limit of Banach spaces
(and vice-versa).

[13.0.3] Remark: This little theorem encapsulates the construction of semi-norms to give a locally convex
topology. It can also be used to reduce the general Hahn-Banach theorem for locally convex spaces to the
Hahn-Banach theorem for Banach spaces.

Proof: In one direction, we already know that a product or limit of Banach spaces is locally convex, since
Banach spaces are locally convex.

In the Banach or normed-space situation, the topology comes from a metric d(v, w) = |v − w| defined in
terms of a single function v → |v| with the usual properties

|α · v| = |α|C · |v| (homogeneity)

|v + w| ≤ |v|+ |w| (triangle inequality)

|v| ≥ 0, (equality only for v = 0) (definiteness)

By contrast, for more general (but locally convex) situations, we consider a family Φ of functions p(v) for
which the definiteness condition is weakened slightly, so we require

p(α · v) = |α|C · p(v) (homogeneity)

p(v + w) ≤ p(v) + p(w) (triangle inequality)

p(v) ≥ 0 (semi-definiteness)

Such a function p() is a semi-norm. For Hausdorff-ness, we further require that the family Φ is separating
in the sense that, given v 6= 0 in V , there is p ∈ Φ such that p(v) > 0.

[60] As is necessary to prove the equivalence of the various definitions of Fréchet space, the converse of this claim is

true, namely, that every locally convex and complete (invariantly) metrizable topological vector space is a countable

limit of Banach spaces. Proof of the converse requires work, namely, development of ideas about seminorms. Since

we don’t need this converse at the moment, we do not give the argument.
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A separating family Φ of semi-norms on a complex vector space V gives a locally convex topology by taking
as local sub-basis [61] at 0 the sets

Up,ε = {v ∈ V : p(v) < ε} (for ε > 0 and p ∈ Φ)

Each of these is convex, because of the triangle inequality for the semi-norms.

[13.0.4] Remark: The topology obtained from a (separating) family of seminorms may appear to be a
random or frivolous generalization of the notion of topology obtained from a norm. However, it is the
correct extension to encompass all locally convex topological vector spaces, as we see now. [62]

For a locally convex topological vector space V , for every open U in a local basis B at 0 of convex opens,
try to define a seminorm

pU (v) = inf{t > 0 : t · U 3 v}

We discover some necessary adjustments, and then verify the semi-norm properties.

First, we show that for any v ∈ V the set over which the inf is taken is non-empty. Since scalar multiplication
C × V → V is (jointly!) continuous, for given v ∈ V , given a neighborhood U of 0 ∈ V , there are
neighborhoods W of 0 ∈ C and U ′ of v such that

α · w ∈ U (for all α ∈W and w ∈ U ′)

In particular, since W contains a disk {|α| < ε} for some ε > 0, we have t · v ∈ U for all 0 < t < ε. That is,

v ∈ t · U (for all t > ε−1)

Semi-definiteness of pU is built into the definition.

To avoid nagging problems, we should verify that, for convex U containing 0, when v ∈ t · U then v ∈ s · U
for all s ≥ t. This follows from the convexity, by

s−1 · v =
t

s
· (t−1 · v) =

t

s
· (t−1 · v) +

s− t
s
· 0 ∈ U

since t−1 · v and 0 are in U .

The homogeneity condition p(α v) = |α| p(v) already presents a minor issue, since convex sets containing 0
need have no special properties regarding multiplication by complex numbers. That is, the problem is that,
given v ∈ t · U , while α v ∈ α · t · U , we do not know that this implies αv ∈ |α| · t · U . Indeed, in general,
it will not. To repair this, to make semi-norms we must use only convex opens U which are balanced in the
sense that

α · U = U (for α ∈ C with |α| = 1)

Then, given v ∈ V , we have v ∈ t · U if and only if α v ∈ t · αU , and now

t αU = t |α| α
|α|

U = t |α|U

by the balanced-ness.

[61] Again, a sub-basis for a topology is a set of opens such that finite intersections form a basis. In other words,

arbitrary unions of finite intersections give all opens.

[62] The semi-norms we construct here are sometimes called Minkowski functionals, even though they are not

functionals in the sense of being continuous linear maps.
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Now we have an obligation to show that there is a local basis (at 0) of convex balanced opens. Fortunately,
this is easy to see, as follows. Given a convex U containing 0, from the continuity of scalar multiplication,
since 0 · v = 0, there is ε > 0 and a neighborhood W of 0 such that α · w ∈ U for |α| < ε and w ∈W . Let

U ′ = {α · w : |α| ≤ ε

2
, w ∈W} =

⋃
|α|≤ε/2

α ·W

Being a union of the opens α · W , this U ′ is open. It is inside U by arrangement, and is balanced by
construction. That is, there is indeed a local basis of convex balanced opens at 0.

For the triangle inequality for pU , given v, w ∈ V , let t1, t2 be such that v ∈ t ·U for t ≥ t1 and w ∈ t ·U for
t ≥ t2. Then, using the convexity,

v + w ∈ t1 · U + t2 · U = (t1 + t2) ·
(

t1
t1 + t2

· U +
t2

t1 + t2
· U
)
⊂ (t1 + t2) · U

This gives the triangle inequality
pU (v + w) ≤ pU (v) + pU (w)

Finally, we check that the semi-norm topology is the original one. This is unsurprising. It suffices to check
at 0. On one hand, given an open W containing 0 in V , there is a convex, balanced open U contained in W ,
and

{v ∈ V : pU (v) < 1} ⊂ U ⊂ W

Thus, the semi-norm topology is at least as fine as the original topology. On the other hand, given convex
balanced open U containing 0, and given ε > 0,

{v ∈ V : pU (v) < ε} ⊃ ε

2
· U

Thus, each sub-basis open for the semi-norm topology contains an open in the original topology. We conclude
that the two topologies are the same.

A summary so far: for a locally convex topological vector space, the semi-norms attached to convex balanced
neighborhoods of 0 give a topology identical to the original, and vice-versa.

Before completing the proof of the theorem, recall that a completion of a set with respect to a pseudo-metric
can be defined much as the completion with respect to a genuine metric. This is relevant because a semi-norm
may only give a pseudo-metric, not a genuine metric.

Let Φ be a (separating) family of seminorms on a vector space V . For a finite subset i of Φ, let Xi be the
completion of V with respect to the semi-norm

pi(v) =
∑
p∈i

p(v)

with natural map fi : V → Xi. Order subsets of Φ by i ≥ j when i ⊃ j. For i > j we have

pi(v) =
∑
p∈i

p(v) ≥
∑
p∈j

p(v) = pj(v)

so we have natural continuous (transition) maps

ϕij : Xi −→ Xj (for i > j)

We claim that each Xi is a Banach space, that V with its semi-norm topology has a natural continuous
inclusion to the limit X = limiXi, and that V has the topology given by the subspace topology inherited
from the limit.
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The maps fi form a compatible family of maps to the Xi, so there is a unique compatible map f : V → X.
By the separating property, given v 6= 0, there is p ∈ Φ such that p(v) 6= 0. Then for all i containing p, we
have fi(v) 6= 0 ∈ Xi. The subsets i containing p are cofinal in this limit, so f(v) 6= 0. Thus, f is an inclusion.

Since the limit is a (closed) subspace of the product of the Xi, it suffices to prove that the topology on V
(imbedded in ΠiXi via f) is the subspace topology from ΠiXi. Since the topology on V is at least this fine
(since f is continuous), we need only show that the subspace topology is at least as fine as the semi-norm
topology. To this end, consider a semi-norm-topology sub-basis set

{v ∈ V : pU (v) < ε} (for ε > 0 and convex balanced open U containing 0)

This is simply the intersection of f(V ) with the sub-basis set

Πp 6={pU}Xi × {v ∈ X{pU} : pU (v) < ε}

with the last factor inside X{pU}. Thus, by construction, the map f : V → X is a homeomorphism of V to
its image. ///

[13.0.5] Remark: We do not assert that an arbitrary locally convex topological vector space is a limit of
Banach spaces. Such an assertion is equivalent to various completeness hypotheses, which we will investigate
later.

14. Appendix: Urysohn and density of Co

Urysohn’s lemma is the technical point that allows us to relate measurable functions to continuous functions.
Then, from the Lebesgue definition of integral, we can prove the density of continuous functions in L2 spaces,
for example.

[14.0.1] Theorem: (Urysohn) In a locally compact Hausdorff topological space X, given a compact subset
K contained in an open set U , there is a continuous function 0 ≤ f ≤ 1 which is 1 on K and 0 off U .

Proof: First, we prove that there is an open set V such that

K ⊂ V ⊂ V ⊂ U

For each x ∈ K let Vx be an open neighborhood of x with compact closure. By compactness of K, some
finite subcollection Vx1

, . . . , Vxn
of these Vx cover K, so K is contained in the open set W =

⋃
i Vxi

which
has compact closure

⋃
i V xi

since the union is finite.

Using the compactness again in a similar fashion, for each x in the closed set X − U there is an open Wx

containing K and a neighborhood Ux of x such that Wx ∩ Ux = φ.

Then ⋂
x∈X−U

(X − U) ∩W ∩W x = φ

These are compact subsets in a Hausdorff space, so (again from compactness) some finite subcollection has
empty intersection, say

(X − U) ∩
(
W ∩W x1

∩ . . . ∩W xn

)
= φ

That is,
W ∩W x1

∩ . . . ∩W xn
⊂ U

Thus, the open set
V = W ∩Wx1 ∩ . . . ∩Wxn
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meets the requirements.

Using the possibility of inserting an open subset and its closure between any K ⊂ U with K compact and U
open, we inductively create opens Vr (with compact closures) indexed by rational numbers r in the interval
0 ≤ r ≤ 1 such that, for r > s,

K ⊂ Vr ⊂ V r ⊂ Vs ⊂ V s ⊂ U

From any such configuration of opens we construct the desired continuous function f by

f(x) = sup{r rational in [0, 1] : x ∈ Vr, } = inf{r rational in [0, 1] : x ∈ V r, }

It is not immediate that this sup and inf are the same, but if we grant their equality then we can prove the
continuity of this function f(x). Indeed, the sup description expresses f as the supremum of characteristic

functions of open sets, so f is at least lower semi-continuous. [63] The inf description expresses f as an
infimum of characteristic functions of closed sets so is upper semi-continuous. Thus, f would be continuous.

To finish the argument, we must construct the sets Vr and prove equality of the inf and sup descriptions of
the function f .

To construct the sets Vi, start by finding V0 and V1 such that

K ⊂ V1 ⊂ V 1 ⊂ V0 ⊂ V 0 ⊂ U

Fix a well-ordering r1, r2, . . . of the rationals in the open interval (0, 1). Supposing that Vr1 , . . . , vrn have
been chosen. let i, j be indices in the range 1, . . . , n such that

rj > rn+1 > ri

and rj is the smallest among r1, . . . , rn above rn+1, while ri is the largest among r1, . . . , rn below rn+1. Using
the first observation of this argument, find Vrn+1

such that

Vrj ⊂ V rj ⊂ Vrn+1 ⊂ V rn+1 ⊂ Vri ⊂ V ri

This constructs the nested family of opens.

Let f(x) be the sup and g(x) the inf of the characteristic functions above. If f(x) > g(x) then there are
r > s such that x ∈ Vr and x 6∈ V s. But r > s implies that Vr ⊂ V s, so this cannot happen. If g(x) > f(x),
then there are rationals r > s such that

g(x) > r > s > f(x)

Then s > f(x) implies that x 6∈ Vs, and r < g(x) implies x ∈ V r. But Vr ⊂ V s, contradiction. Thus,
f(x) = g(x). ///

[14.0.2] Corollary: For a topological space X with a regular Borel measure µ, Coc (X) is dense in L2(X,µ).

Proof: The regularity of the measure is the property that µ(E) is both the sup of µ(K) for compacts K ⊂ E,
and is the inf of µ(U) for opens U ⊃ E. From Urysohn’s lemma, we have a continuous fK,U (x) which is 1 on
K and 0 off U . Let K1 ⊂ K2 ⊂ ... be a sequence of compacts inside E whose measure approaches that of E
from below, and let U1 ⊃ U2 ⊃ . . . be a sequence of opens containing E whose measures approach that of E

[63] A (real-valued) function f is lower semi-continuous when for all bounds B the set {x : f(x) > B} is open. The

function f is upper semi-continuous when for all bounds B the set {x : f(x) < B} is open. It is easy to show that

a sup of lower semi-continuous functions is lower semi-continuous, and an inf of upper semi-continuous functions is

upper semi-continuous. As expected, a function both upper and lower semi-continuous is continuous.
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from above. Let fi be a function as in Urysohn’s lemma made to be 1 on Ki and 0 off Ui. Then Lebesgue’s
Dominated convergence theorem implies that

fi −→ (characteristic function of E) (in L2(X,µ))

From the definition of integral of measurable functions, finite linear combinations of characteristic functions
are dense in L2 (or any other Lp with 1 ≤ p <∞). Thus, continuous functions are dense. ///
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