Distributions supported on hyperplanes

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/ [This document is http://www.math.umn.edu/~garrett/m/fun/notes_2012-13/09c_distns_on_subs.pdf]

[0.0.1] Theorem: A distribution u on $\mathbb{R}^{m+n} \approx \mathbb{R}^m \times \mathbb{R}^n$ supported on $\mathbb{R}^m \times \{0\}$, is uniquely expressible as a locally finite sum of transverse differentiations followed by restriction and evaluations, namely, a locally finite sum

$$u = \sum_{\alpha} u_{\alpha} \circ \operatorname{res}_{\mathbb{R}^m \times \{0\}}^{\mathbb{R}^m \times \mathbb{R}^n} \circ D^{\alpha}$$

where α is summed over multi-indices $(\alpha_1, \ldots, \alpha_n)$, D^{α} is the corresponding differential operator on $\{0\} \times \mathbb{R}^n$, and u_{α} are distributions on $\mathbb{R}^m \times \{0\}$. Further,

$$\operatorname{spt} u_{\alpha} \times \{0\} \subset \operatorname{spt} u$$
 (for all multi-indices α)

Proof: For brevity, let

$$\rho = \operatorname{res}_{\mathbb{R}^m \times \{0\}}^{R^m \times R^n} : C_c^{\infty}(\mathbb{R}^m \times \mathbb{R}^n) \longrightarrow C_c^{\infty}(\mathbb{R}^m)$$

be the natural restriction map of test functions on $\mathbb{R}^m \times \mathbb{R}^n$ to $\mathbb{R}^m \times \{0\}$, by

$$(\rho f)(x) = f(x,0)$$
 (for $x \in \mathbb{R}^m$)

The adjoint $\rho^* : \mathcal{D}(\mathbb{R}^m) \to \mathcal{D}(\mathbb{R}^{m+n})$ is a continuous map of distributions on \mathbb{R}^m to distributions on $\mathbb{R}^m \times \mathbb{R}^n$, defined by

$$(\rho^* u)(f) = u(\rho(f))$$

First, if we could apply u to functions of the form $F(x,y) = f(x) \cdot y^{\beta}$, and if u had an expression as a sum as in the statement of the theorem, then

$$u(f(x) \cdot \frac{y^{\alpha}}{\alpha!}) = (-1)^{|\beta|} \cdot u_{\beta}(f) \cdot \beta!$$

since most of the transverse derivatives evaluated at 0 vanish. This is not quite legitimate, since y^{α} is not a test function. However, we can take a test function ψ on \mathbb{R}^n that is identically 1 near 0, and consider $\psi(y) \cdot y^{\alpha}$ instead of y^{α} , and reach the same conclusion.

Thus, if there exists such an expression for u, it is unique. Further, this computation suggests how to specify the u_{α} , namely,

$$u_{\beta}(f) = u(f(x) \otimes \frac{y^{\beta}}{\beta!} \cdot \psi(y) \cdot (-1)^{|\beta|})$$

This would also show the containment of the supports.

Show that the sum of these u_{β} 's does give u. Given an open U in \mathbb{R}^{m+n} with compact closure, u on \mathcal{D}_U has some finite order k. As a slight generalization of the fact that distributions supported on $\{0\}$ are finite linear combinations of Dirac delta and its derivatives, we have

[0.0.2] Lemma: Let v be a distribution of finite order k supported on a compact set K. For a test function φ whose derivatives up through order k vanish on K, $v(\varphi) = 0$.

For any test function F(x, y),

$$\Phi(x,y) = F(x,y) - \sum_{|\alpha| \le k} (-1)^{|\alpha|} \frac{y^{\alpha}}{\alpha!} \psi(y) (D^{\alpha}F)(x,0)$$

has all derivatives vanishing to order k on the closure of U. Thus, by the lemma, $u(\Phi) = 0$, which proves that u is equal to that sum, and also proves the local finiteness.